

Contents
1. Cover Page

2. Title Page

3. Copyright Page

4. Dedication Page

5. Contents at a glance

6. Contents

7. Acknowledgments

8. About the author

9. Introduction

1. Organization of this book

2. Microsoft certifications

3. Errata, updates, and book support

4. Stay in touch

10. Important: How to use this book to study for the exam

11. Chapter 1. Develop Azure Infrastructure as a service compute
solution

1. Skill 1.1: Implement solutions that use virtual machines
(VM)

2. Skill 1.2: Create Azure App Service web apps

3. Skill 1.3: Implement Azure Functions

4. Chapter summary

5. Thought experiment

6. Thought experiment answers

12. Chapter 2. Develop for Azure storage

1. Skill 2.1: Develop solutions that use Cosmos DB storage

2. Skill 2.2: Develop solutions that use Blob Storage

3. Chapter summary

4. Thought experiment

5. Thought experiment answers

13. Chapter 3. Implement Azure security

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/cover.xhtml

1. Skill 3.1: Implement user authentication and
authorization

2. Skill 3.2: Implement secure cloud solutions

3. Chapter summary

4. Thought experiment

5. Thought experiment answers

14. Chapter 4. Monitor, troubleshoot, and optimize Azure solutions

1. Skill 4.1: Integrate caching and content delivery within
solutions

2. Skill 4.2: Instrument solutions to support monitoring
and logging

3. Chapter summary

4. Thought experiment

5. Thought experiment answers

15. Chapter 5. Connect to and consume Azure services and third-party
services

1. Skill 5.1: Develop an App Service Logic App

2. Skill 5.2: Implement API Management

3. Skill 5.3: Develop event-based solutions

4. Skill 5.4: Develop message-based solutions

5. Chapter summary

6. Thought experiment

7. Thought experiment answers

16. Index

17. Exam Ref AZ-204 Developing Solutions for Microsoft Azure

18. Code Snippets

1. i

2. ii

3. iii

4. iv

5. v

6. vi

7. vii

8. viii

9. ix

10. x

11. xi

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch01_images.xhtml#ch01_images

12. xii

13. xiii

14. xiv

15. xv

16. xvi

17. xvii

18. xviii

19. 1

20. 2

21. 3

22. 4

23. 5

24. 6

25. 7

26. 8

27. 9

28. 10

29. 11

30. 12

31. 13

32. 14

33. 15

34. 16

35. 17

36. 18

37. 19

38. 20

39. 21

40. 22

41. 23

42. 24

43. 25

44. 26

45. 27

46. 28

47. 29

48. 30

49. 31

50. 32

51. 33

52. 34

53. 35

54. 36

55. 37

56. 38

57. 39

58. 40

59. 41

60. 42

61. 43

62. 44

63. 45

64. 46

65. 47

66. 48

67. 49

68. 50

69. 51

70. 52

71. 53

72. 54

73. 55

74. 56

75. 57

76. 58

77. 59

78. 60

79. 61

80. 62

81. 63

82. 64

83. 65

84. 66

85. 67

86. 68

87. 69

88. 70

89. 71

90. 72

91. 73

92. 74

93. 75

94. 76

95. 77

96. 78

97. 79

98. 80

99. 81

100. 82

101. 83

102. 84

103. 85

104. 86

105. 87

106. 88

107. 89

108. 90

109. 91

110. 92

111. 93

112. 94

113. 95

114. 96

115. 97

116. 98

117. 99

118. 100

119. 101

120. 102

121. 103

122. 104

123. 105

124. 106

125. 107

126. 108

127. 109

128. 110

129. 111

130. 112

131. 113

132. 114

133. 115

134. 116

135. 117

136. 118

137. 119

138. 120

139. 121

140. 122

141. 123

142. 124

143. 125

144. 126

145. 127

146. 128

147. 129

148. 130

149. 131

150. 132

151. 133

152. 134

153. 135

154. 136

155. 137

156. 138

157. 139

158. 140

159. 141

160. 142

161. 143

162. 144

163. 145

164. 146

165. 147

166. 148

167. 149

168. 150

169. 151

170. 152

171. 153

172. 154

173. 155

174. 156

175. 157

176. 158

177. 159

178. 160

179. 161

180. 162

181. 163

182. 164

183. 165

184. 166

185. 167

186. 168

187. 169

188. 170

189. 171

190. 172

191. 173

192. 174

193. 175

194. 176

195. 177

196. 178

197. 179

198. 180

199. 181

200. 182

201. 183

202. 184

203. 185

204. 186

205. 187

206. 188

207. 189

208. 190

209. 191

210. 192

211. 193

212. 194

213. 195

214. 196

215. 197

216. 198

217. 199

218. 200

219. 201

220. 202

221. 203

222. 204

223. 205

224. 206

225. 207

226. 208

227. 209

228. 210

229. 211

230. 212

231. 213

232. 214

233. 215

234. 216

235. 217

236. 218

237. 219

238. 220

239. 221

240. 222

241. 223

242. 224

243. 225

244. 226

245. 227

246. 228

247. 229

248. 230

249. 231

250. 232

251. 233

252. 234

253. 235

254. 236

255. 237

256. 238

257. 239

258. 240

259. 241

260. 242

261. 243

262. 244

263. 245

264. 246

265. 247

266. 248

267. 249

268. 250

269. 251

270. 252

271. 253

272. 254

273. 255

274. 256

275. 257

276. 258

277. 259

278. 260

279. 261

280. 262

281. 263

282. 264

283. 265

284. 266

285. 267

286. 268

287. 269

288. 270

289. 271

290. 272

291. 273

292. 274

293. 275

294. 276

295. 277

296. 278

297. 279

298. 280

299. 281

300. 282

301. 283

302. 284

303. 285

304. 286

305. 287

306. 288

307. 289

308. 290

309. 291

310. 292

311. 293

312. 294

313. 295

314. 296

315. 297

316. 298

317. 299

318. 300

319. 301

320. 302

321. 303

322. 304

323. 305

324. 306

325. 307

326. 308

327. 309

328. 310

329. 311

330. 312

331. 313

332. 314

333. 315

334. 316

335. 317

336. 318

337. 319

338. 320

339. 321

340. 322

341. 323

342. 324

343. 325

344. 326

345. 327

346. 328

347. 329

348. 330

349. 331

350. 332

351. 333

352. 334

353. u-1

354. u-2

355. u-3

356. u-4

357. u-5

358. u-6

359. u-7

360. u-8

361. u-9

Exam Ref AZ-204 Developing
Solutions for Microso�

Azure

Santiago Fernández Muñoz

Exam Ref AZ-204 Developing Solutions for
Microsoft Azure

Published with the authorization of Microsoft
Corporation by:
Pearson Education, Inc.

Copyright © 2021 by Pearson Education, Inc.

All rights reserved. This publication is protected by
copyright, and permission must be obtained from the
publisher prior to any prohibited reproduction, storage
in a retrieval system, or transmission in any form or by
any means, electronic, mechanical, photocopying,
recording, or likewise. For information regarding
permissions, request forms, and the appropriate contacts
within the Pearson Education Global Rights &
Permissions Department, please visit
www.pearson.com/permissions. No patent liability is
assumed with respect to the use of the information
contained herein. Although every precaution has been
taken in the preparation of this book, the publisher and
author assume no responsibility for errors or omissions.
Nor is any liability assumed for damages resulting from
the use of the information contained herein.

ISBN-13: 978-0-13-679833-0
ISBN-10: 0-13-679833-0

Library of Congress Control Number: 2020942404

ScoutAutomatedPrintCode

Trademarks

Microsoft and the trademarks listed at
http://www.microsoft.com on the “Trademarks”
webpage are trademarks of the Microsoft group of
companies. All other marks are property of their
respective owners.

http://www.pearson.com/permissions
http://www.microsoft.com/

Warning and Disclaimer

Every effort has been made to make this book as
complete and as accurate as possible, but no warranty or
fitness is implied. The information provided is on an “as
is” basis. The author, the publisher, and Microsoft
Corporation shall have neither liability nor responsibility
to any person or entity with respect to any loss or
damages arising from the information contained in this
book or from the use of the programs accompanying it.

Special Sales

For information about buying this title in bulk
quantities, or for special sales opportunities (which may
include electronic versions; custom cover designs; and
content particular to your business, training goals,
marketing focus, or branding interests), please contact
our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact
governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact
intlcs@pearson.com.

Credits

Editor-in-Chief
Brett Bartow

Executive Editor
Loretta Yates

Associate Editor
Charvi Arora

Development Editors
Songlin Qiu, Charvi Arora

Managing Editor
Sandra Schroeder

Senior Project Editor
Tracey Croom

Copy Editor
Charlotte Kughen

Indexer
Cheryl Ann Lenser

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com

Proofreader
Abigail Manheim

Technical Editor
Dave McCollough

Editorial Assistant
Cindy Teeters

Cover Designer
Twist Creative, Seattle

Compositor
codeMantra

—Santiago Fernández Muñoz

To my wonderful wife, because of her
support and inspiration, especially in the
hard times.

Contents at a glance

Introduction

Important: How to use this book to study
for the exam

Chapter 1 Develop Azure Infrastructure as a
service compute solution

Chapter 2 Develop for Azure storage

Chapter 3 Implement Azure security

Chapter 4 Monitor, troubleshoot, and optimize
Azure solutions

Chapter 5 Connect to and consume Azure
services and third-party services

Index

Contents

Introduction
Organization of this book
Microsoft certifications

Errata, updates, and book support
Stay in touch

Important: How to use this book to
study for the exam

Chapter 1 Develop Azure Infrastructure as a
service compute solution

Skill 1.1: Implement solutions that use virtual
machines (VM)

Provision VMs

Configure VMs for remote access

Create ARM templates

Create container images for solutions by
using Docker

Publish an image to the Azure Container
Registry

Run containers by using Azure
Container Instance

Skill 1.2: Create Azure App Service web apps

Create an Azure App Service web app

Enable diagnostics logging

Deploy code to a web app

Configure web app settings including
SSL, API, and connection strings

Implement autoscaling rules, including
scheduled autoscaling, and scaling by
operational or system metrics

Skill 1.3: Implement Azure Functions

Implement input and output bindings
for a function

Implement function triggers by using
data operations, timers, and webhooks

Implement Azure Durable Functions

Chapter summary

Thought experiment

Thought experiment answers

Chapter 2 Develop for Azure storage

Skill 2.1: Develop solutions that use Cosmos
DB storage

Select the appropriate API for your
solution

Implement partitioning schemes

Interact with data using the appropriate
SDK

Set the appropriate consistency level for
operations

Create Cosmos DB containers

Implement server-side programming
including stored procedures, triggers,
and change feed notifications

Skill 2.2: Develop solutions that use Blob
Storage

Move items in Blob Storage between
Storage Accounts or containers

Set and retrieve properties and metadata

Interact with data using the appropriate
SDK

Implement data archiving and retention

Implement hot, cool, and archive storage

Chapter summary

Thought experiment

Thought experiment answers

Chapter 3 Implement Azure security

Skill 3.1: Implement user authentication and
authorization

Implement OAuth2 authentication

Create and implement shared access
signatures

Register apps and use Azure Active
Directory to authenticate users

Control access to resources by using
role-based access controls (RBAC)

Skill 3.2: Implement secure cloud solutions

Secure app configuration data by using
the App Configuration and KeyVault API

Manage keys, secrets, and certificates by
using the KeyVault API

Implement Managed Identities for Azure
resources

Chapter summary

Thought experiment

Thought experiment answers

Chapter 4 Monitor, troubleshoot, and optimize
Azure solutions

Skill 4.1: Integrate caching and content
delivery within solutions

Develop code to implement CDNs in
solutions

Configure cache and expiration policies
for FrontDoor, CDNs, and Redis caches

Store and retrieve data in Azure Redis
Cache

Skill 4.2: Instrument solutions to support
monitoring and logging

Configure instrumentation in an app or
service by using Application Insights

Analyze log data and troubleshoot
solutions by using Azure Monitor

Implement Application Insights Web
Test and Alerts

Implement code that handles transient
faults

Chapter summary

Thought experiment

Thought experiment answers

Chapter 5 Connect to and consume Azure
services and third-party services

Skill 5.1: Develop an App Service Logic App

Create a Logic App

Create a custom connector for Logic
Apps

Create a custom template for Logic Apps

Skill 5.2: Implement API Management

Create an APIM instance

Configure authentication for APIs

Define policies for APIs

Skill 5.3: Develop event-based solutions

Implement solutions that use Azure
Event Grid

Implement solutions that use Azure
Notification Hubs

Implement solutions that use Azure
Event Hub

Skill 5.4: Develop message-based solutions

Implement solutions that use Azure
Service Bus

Implement solutions that use Azure
Queue Storage queues

Chapter summary

Thought experiment

Thought experiment answers

Index

Acknowledgments

I want to say thank you to the people who gave me the
opportunity to write this book and who also helped me
during the entire process. Without their support, this
book would not be a reality.

I also want to say thank you to my friend Rafa Hueso for
his support and guidance during the last years of my
professional career.

About the author

I started my career as a Linux and Windows instructor.
At the same time, I also started to learn scripting
programming languages such as bash and VBS that were
useful for my work. During that period of my career, I
realized scripting languages were helpful, but they were
not enough to meet all my needs, so I started learning
other languages like Java, PHP, and finally C#.

I’ve been working as a Microsoft technologies consultant
for the last 14 years, and over the last 6 years, I’ve
consulted on Azure-related technologies. I’ve
participated in different types of projects, serving in a
variety of capacities from .NET developer to solution
architect. Now I’m focused on developing custom
industrial IoT solutions for my company and clients.

Introduction

Most books take a very low-level approach, teaching you
how to use individual classes and accomplish fine-
grained tasks. Through this book, we review the main
technologies that Microsoft offers for deploying different
kinds of solutions into Azure. From the most classical
and conservative approaches using Azure virtual
machines to the latest technologies, implementing event-
based or message-based patterns with Azure Event Grid
or Azure Service Bus, this book reviews the basics for
developing most types of solutions using Azure services.
The book also provides code examples for illustrating
how to implement most of the concepts covered through
the different sections.

This book is intended for those professionals who are
planning to pass the exam AZ-204. This book covers
every major topic area found on the exam, but it does not
cover every exam question. Only the Microsoft exam
team has access to the exam questions, and Microsoft
regularly adds new questions to the exam, making it
impossible to cover specific questions. You should
consider this book a supplement to your relevant real-
world experience and other study materials. If you
encounter a topic in this book that you do not feel
completely comfortable with, use the “Need more
review?” links in the text to find more information and
take the time to research and study the topic. Great
information is available on MSDN and TechNet and in
blogs and forums.

ORGANIZATION OF THIS BOOK

This book is organized by the “Skills measured” list
published for the exam. The “Skills measured” list is
available for each exam on the Microsoft Learn website:
http://aka.ms/examlist. Each chapter in this book
corresponds to a major topic area in the list, and the
technical tasks in each topic area determine a chapter’s
organization. If an exam covers six major topic areas, for
example, the book contains six chapters.

MICROSOFT CERTIFICATIONS

Microsoft certifications distinguish you by proving your
command of a broad set of skills and experience with
current Microsoft products and technologies. The exams
and corresponding certifications are developed to
validate your mastery of critical competencies as you
design and develop, or implement and support, solutions
with Microsoft products and technologies both on
premises and in the cloud. Certification brings a variety
of benefits to the individual and to employers and
organizations.

More Info All Microso� Certifications
For information about Microsoft certifications, including a full list of available
certifications, go to http://www.microsoft.com/learn.

Check back often to see what is new!

ERRATA, UPDATES, AND BOOK
SUPPORT

We’ve made every effort to ensure the accuracy of this
book and its companion content. You can access updates
to this book—in the form of a list of submitted errata and
their related corrections—at

MicrosoftPressStore.com/ExamRefAZ204/errata.

http://aka.ms/examlist
http://www.microsoft.com/learn

If you discover an error that is not already listed, please
submit it to us at the same page.

For additional book support and information, please visit

http://www.MicrosoftPressStore.com/Support.

Please note that product support for Microsoft software
and hardware is not offered through the previous
addresses. For help with Microsoft software or hardware,
go to http://support.microsoft.com.

STAY IN TOUCH

Let’s keep the conversation going! We’re on Twitter:

http://twitter.com/MicrosoftPress

http://www.microsoftpressstore.com/Support
http://support.microsoft.com/
http://twitter.com/MicrosoftPress

Important: How to use this book
to study for the exam

Certification exams validate your on-the-job experience
and product knowledge. To gauge your readiness to take
an exam, use this Exam Ref to help you check your
understanding of the skills tested by the exam.
Determine the topics you know well and the areas in
which you need more experience. To help you refresh
your skills in specific areas, we have also provided “Need
more review?” pointers, which direct you to more in-
depth information outside the book.

The Exam Ref is not a substitute for hands-on
experience. This book is not designed to teach you new
skills.

We recommend that you round out your exam
preparation by using a combination of available study
materials and courses. Learn more about available
classroom training and find free online courses and live
events at http://microsoft.com/learn. Microsoft Official
Practice Tests are available for many exams at
http://aka.ms/practicetests.

This book is organized by the “Skills measured” list
published for the exam. The “Skills measured” list for
each exam is available on the Microsoft Learn website:
http://aka.ms/examlist.

Note that this Exam Ref is based on this publicly
available information and the author’s experience. To
safeguard the integrity of the exam, authors do not have
access to the exam questions.

http://microsoft.com/learn
http://aka.ms/practicetests
http://aka.ms/examlist

Chapter 1. Develop Azure
Infrastructure as a service
compute solution

Today, cloud computing is a consolidated reality that any
company or professional should consider when
developing or maintaining new or existing products.
When you are planning for developing or deploying an
application, you can choose between two main models of
cloud services, Infrastructure as a Service (IaaS) or
Platform as a Service (PaaS), and each model has its pros
and cons. If you decide to use the IaaS model, you have
more granular control over the infrastructure that will
support your application.

However, once the deployment in the production
environment has finished, you need to maintain it. This
maintenance means that you also need to allocate the
budget for the support of the infrastructure, and you
must have trained staff for conducting this maintenance.

Thanks to cloud technologies, you can drastically reduce
these infrastructure planning and deployment
requirements by deploying your software on a managed
service known as Platform as a Service (PaaS). Doing so
means you only need to worry about your code and how
it interacts with other services in Azure. PaaS products
such as Azure App Service or Azure Functions releases
you from worrying about highly available or fault-
tolerant configurations because the service provided by
Azure already manages these things.

This chapter reviews how to work with the options that
Azure makes available to you for developing your
solutions based on the IaaS model. The chapter also

covers the PaaS solutions that Azure provides, which
allow you to focus on your code and forget about the
underlying infrastructure.

Important Have you read page xvii?
It contains valuable information regarding the skills
you need to pass the exam.

Skills covered in this chapter:

Skill 1.1: Implement solutions that use virtual machines (VM)

Skill 1.2: Create Azure App Service web apps

Skill 1.3: Implement Azure Functions

SKILL 1.1: IMPLEMENT SOLUTIONS
THAT USE VIRTUAL MACHINES (VM)

One of the main characteristics of the IaaS model is the
higher level of control that it offers when deploying the
infrastructure needed for your application. Typically, you
need to work with this model because you need more
control over the different elements of your application.
Using IaaS, you deploy your virtual machines, where you
will implement all the components required for your
solution.

Azure provides you with all the underlying hardware and
configuration needed for your virtual machine (VM) to
run correctly. However, you still need to manage all
administrative tasks related to the VM’s operating
system, such as installing operating system upgrades or
security patches. Microsoft manages the configuration
required for providing the fault tolerance for the physical
hardware that supports your VM. But if you need your
application or software solution to be highly available,
you have to manage the configuration of the VMs that
host your application.

This skill covers how to

Provision VMs

Configure VMs for remote access

Create ARM templates

Create container images for solutions by using Docker

Publish an image to the Azure Container Registry

Run containers by using Azure Container Instance

Provision VMs

Deploying a VM in Azure is a straightforward process,
but you still need to think about some key points if you
want to achieve the best balance between the costs and
your requirements. Perhaps the most obvious decision is
which operating system you should use. The good news
is that Azure fully supports Windows, Windows Server,
and the principal distributions of Linux.

Note Supported Operating Systems
You can review the full list of supported operating systems to be used in Azure VMs at
the following URLs:

Windows: https://support.microsoft.com/en-us/help/2721672/microsoft-server-
software-support-for-microsoft-azure-virtual-machines

Linux: https://docs.microsoft.com/en-us/azure/virtual-machines/linux/endorsed-
distros

All these Windows and Linux OSes are preinstalled and
available to you in the Azure Marketplace as VM Images.
Apart from these default VM images, you will also find
other images in the marketplace from other vendors
containing preconfigured solutions that may better
match your needs.

Once you have chosen your operating system, you need
to decide other essential aspects of the VM:

Name Enter the name of the VM. Names may be up to 15
characters long.

Location Select the geographical region where you deploy your
VM. Azure has several data centers distributed across the globe
that are grouped in geographical regions. Choosing the wrong
region or location may have adverse effects.

https://support.microsoft.com/en-us/help/2721672/microsoft-server-software-support-for-microsoft-azure-virtual-machines
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/endorsed-distros

Size Designate the number of resources that you will assign to
your virtual machines. These resources include the amount of
memory, processing power, number of virtual network interface
cards (NICs) that you can attach to your VM, and total storage
capacity that will be available for your VM.

Limits Every subscription has default quota limits. These limits
can affect you when deploying new virtual machines. By default,
each subscription has a limit of 20 VMs per region. However, you
can increase this limit by contacting Azure’s support service.

Extensions Extensions enable you to automate some tasks or
configuration once the deployment of your VM completes
successfully. Some of the most common extensions are

Run custom scripts

Deploy and manage configurations

Collect diagnostic data

Related resources When you deploy a virtual machine, you
need to think about the amount and type of storage, such as
whether this VM will be connected to the internet and need a
public IP or which kind of traffic is allowed to go to or from the
VM. Some of these related resources, described in the following
list, are mandatory for deploying a VM.

Resource group Every virtual machine needs to be
contained in a resource group. You can create a new
resource group or reuse an existing one.

Storage account The virtual disks needed by the VM
are .vhd files stored as page blobs in a storage account.
Depending on the performance requirements of your
VM, you can use standard or premium Storage accounts.
If you configure managed disks when deploying a VM,
Azure handles the Storage account automatically and it
won’t appear in the VM configuration.

Virtual network To be able to communicate with the
rest of the world, your new VM needs to be connected to
a virtual network.

Network interface As in the physical world, your VM
needs a network interface to connect to the virtual
network for sending and receiving information.

Once you have gathered all the information that you
need to deploy your VM, you are ready for deployment.
You have several ways of doing this task:

Using the Azure portal

Using PowerShell

Using Azure CLI

Programmatically using REST API or C#

In general, when you want to deploy a new VM, you need
to follow these steps:

1. Create a resource group for the VM. You can also use an existing
resource group for this VM.

2. Create a virtual network. If you are using the Azure portal, you can do
this while you are creating the VM. For PowerShell and Azure CLI, you
need to specify the virtual network. However, if a virtual network
doesn’t already exist, one is created automatically.

3. Create a virtual NIC. If you are using Azure portal, PowerShell, or Azure
CLI, you don’t need to do this because the deployment process
automatically creates the NIC for you.

4. Create the virtual machine.

The following example shows how to create a simple
.NET Core console application for creating a VM:

1. Open Visual Studio Code. You need to have installed the Omnishare
extension.

2. Create a folder for your project.

3. In the terminal window, change the working directory to the folder that
you created in the previous step and type the following command.

dotnet new console

4. Install the nuget package Microsoft.Azure.Management.Fluent.

Click here to view code image

dotnet add package
Microsoft.Azure.Management.Fluent

5. Create an empty file called azureauth.properties. Add the content
shown in Listing 1-1 to the file. Replace the variables with the values
from your Azure subscription.

6. Replace the content of Program.cs file with the content in Listing 1-2.
Listing 1-2 shows how to create a virtual machine with managed disks in
your Azure subscription.

Listing 1-1 azureauth.properties

Click here to view code image

subscription=<subscription-id>
client=<client-id>

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch01_images.xhtml#pg004a
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch01_images.xhtml#lis1-1a

Listing 1-2 Program.cs

Click here to view code image

key=<client-secret>
tenant=<tenant-id>
managementURI=https://management.core.windows.net/
baseURL=https://management.azure.com/
authURL=https://login.windows.net/
graphURL=https://graph.windows.net/

//dotnet core 2.2
using System;
using Microsoft.Azure.Management.Compute.Fluent;
using Microsoft.Azure.Management.Compute.Fluent.Model
using Microsoft.Azure.Management.Fluent;
using Microsoft.Azure.Management.ResourceManager.Flue
using Microsoft.Azure.Management.ResourceManager.Flue

namespace ch1_1_1
{
 class Program
 {
 static void Main(string[] args)
 {
 //Create the management client. This will
 //that we will perform in Azure.
 var credentials = SdkContext.AzureCredent
 .FromFile("./

 var azure = Azure.Configure()
 .WithLogLevel(HttpLoggingDelegatingHa
 .Authenticate(credentials)
 .WithDefaultSubscription();

 //First of all, we need to create a resou
 //the resources
 // needed for the virtual machine
 var groupName = "az204-ResourceGroup";
 var vmName = "az204VMTesting";
 var location = Region.USWest2;
 var vNetName = "az204VNET";
 var vNetAddress = "172.16.0.0/16";
 var subnetName = "az204Subnet";
 var subnetAddress = "172.16.0.0/24";
 var nicName = "az204NIC";
 var adminUser = "azureadminuser";
 var adminPassword = "Pa$$w0rd!2019";

 Console.WriteLine($"Creating resource gro
 var resourceGroup = azure.ResourceGroups.
 .WithRegion(location)

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch01_images.xhtml#lis1-2a

Note Application Requirements
To run all the examples through this book, you need to have an Azure subscription. If
you don’t have an Azure subscription, you can create a free subscription for testing the
code in this book.

Also, you need to create an Azure AD application and a security principal in your Azure
subscription. You need to configure these elements to grant, create, and modify
privileges to your application. Follow the instructions in this procedure for creating the
Azure AD application and the security principal. See https://docs.microsoft.com/en-
us/azure/active-directory/develop/howto-create-service-principal-portal.

 .Create();

 //Every virtual machine needs to be conne
 Console.WriteLine($"Creating virtual netw
 var network = azure.Networks.Define(vNetN
 .WithRegion(location)
 .WithExistingResourceGroup(groupName)
 .WithAddressSpace(vNetAddress)
 .WithSubnet(subnetName, subnetAddress
 .Create();

 //Any virtual machine need a network inte
 //virtual network
 Console.WriteLine($"Creating network inte
 var nic = azure.NetworkInterfaces.Define(
 .WithRegion(location)
 .WithExistingResourceGroup(groupName)
 .WithExistingPrimaryNetwork(network)
 .WithSubnet(subnetName)
 .WithPrimaryPrivateIPAddressDynamic()
 .Create();

 //Create the virtual machine
 Console.WriteLine($"Creating virtual mach
 azure.VirtualMachines.Define(vmName)
 .WithRegion(location)
 .WithExistingResourceGroup(groupName)
 .WithExistingPrimaryNetworkInterface(
 .WithLatestWindowsImage("MicrosoftWin
"2012-R2-Datacenter")
 .WithAdminUsername(adminUser)
 .WithAdminPassword(adminPassword)
 .WithComputerName(vmName)
 .WithSize(VirtualMachineSizeTypes.Sta
 .Create();
 {

 }
 }
 }
}

https://docs.microsoft.com/en-us/azure/active-directory/develop/howto-create-service-principal-portal

As you can see in Listing 1-2, you need to create each of
the related and required resources separately and then
provide all the required dependencies to the Azure
management client that creates the VM.

Before you proceed to deploy a new VM, you also need to
take into account other considerations that would affect
the deployment. For example, if your application or
software solution must be highly available, you would
typically use a load balancer. If your virtual machines use
a load balancer, you need to put your VMs that host the
application into an availability set. Using an availability
set ensures that any virtual machine in the same
availability set is not placed on the same hardware.
Placing the virtual machines in different equipment
ensures that the VMs are not restarted at the same time
because of software upgrades on the servers running the
VM. A virtual machine may only be added to an
availability set during the creation of the VM. If you
forget to add the VM to an availability set, you need to
delete the VM and start from the beginning.

Need More Review? Manage The Availability of Your Virtual Machines
You can find more information about how to manage the availability of your virtual
machines by reviewing the article at https://docs.microsoft.com/en-us/azure/virtual-
machines/windows/manage-availability.

 Exam Tip

Creating a VM is a straightforward process, but
you still need to plan the deployment. You need
to consider whether you need to make the
application highly available hosted in the virtual
machine, or if you need to scale-up and down
the number of VMs associated to a load
balancer. In such cases, you need to remember
to create the availability set before you create the
VMs.

https://docs.microsoft.com/en-us/azure/virtual-machines/windows/manage-availability

Configure VMs for remote access

The preceding section reviewed how to create a new VM
programmatically. When you created the VM from the
previous example, you were not able to access your new
VM. The reason for this is that you didn’t configure a
public IP address that you can use for remotely accessing
the VM.

As you can imagine, just adding a public IP to your VM
may lead to excessive exposure to the internet. You could
control that exposure by using the firewalls provided by
the operating system. But maintaining all firewalls for a
number VMs can be a time-consuming task. Azure
provides you with Network Security Groups as a
mechanism for filtering the traffic between your Azure
resources and different networks, including the internet.
If you need to configure the remote access for your VM,
you need to add a security rule to a network security
group associated with your VM.

By default, any VM that you deploy using an Azure
virtual machine image has the corresponding remote
access protocol enabled—that is, Remote Desktop
Protocol or RDP for Windows VMs and Secure Shell or
SSH for Linux VMs.

Following from the example in Listing 1-2, you need to
add three additional items to the code to have remote
access to your VM:

A public IP You can configure a static or dynamic IP. Static IP
has costs associated, so this example uses a dynamic IP.

A network security group You need this for managing the
security rules that allow or deny access to the VM.

A security rule You need to create a security rule for allowing
access to the VM using the appropriate remote protocol. For this
example, you need to allow the traffic to TCP/3389 port. This is
the port for the Remote Desktop Protocol.

Listing 1-3 shows the modifications in bold that you need
to make in your code for configuring the remote access to

your VM during the deployment.

Listing 1-3 Modified Program.cs

Click here to view code image

//dotnet core 2.2
using System;
using Microsoft.Azure.Management.Compute.Fluent;
using Microsoft.Azure.Management.Compute.Fluent.Model
using Microsoft.Azure.Management.Network.Fluent;
using Microsoft.Azure.Management.Fluent;
using Microsoft.Azure.Management.ResourceManager.Flue
using Microsoft.Azure.Management.ResourceManager.Flue
using Microsoft.Azure.Management.Network.Fluent.Model

namespace ch1_1_2
{
 class Program
 {
 static void Main(string[] args)
 {
 //Create the management client. This will
 //that we will perform in Azure.
 var credentials = SdkContext.AzureCredent
 .FromFile("./azureau
 var azure = Azure.Configure()
 .WithLogLevel(HttpLoggingDelegatingHa
 .Authenticate(credentials)
 .WithDefaultSubscription();

 //First of all, we need to create a resou
 //the resources
 // needed for the virtual machine
 var groupName = "az204-ResourceGroup";
 var vmName = "az204VMTesting";
 var location = Region.USWest2;
 var vNetName = "az204VNET";
 var vNetAddress = "172.16.0.0/16";
 var subnetName = "az204Subnet";
 var subnetAddress = "172.16.0.0/24";
 var nicName = "az204NIC";
 var adminUser = "azureadminuser";
 var adminPassword = "Pa$$w0rd!2019";
 var publicIPName = "az204publicIP";
 var nsgName = "az204VNET-NSG";

 Console.WriteLine($"Creating resource gro
 var resourceGroup = azure.ResourceGroups.
 .WithRegion(location)
 .Create();

 //Every virtual machine needs to be conne

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch01_images.xhtml#lis1-3a

 Console.WriteLine($"Creating virtual netw
 var network = azure.Networks.Define(vNetN
 .WithRegion(location)
 .WithExistingResourceGroup(groupName)
 .WithAddressSpace(vNetAddress)
 .WithSubnet(subnetName, subnetAddress
 .Create();

 //You need a public IP to be able to conn
 Console.WriteLine($"Creating public IP {p
 var publicIP = azure.PublicIPAddresses.De
 .WithRegion(location)
 .WithExistingResourceGroup(groupName)
 .Create();

 //You need a network security group for c
 Console.WriteLine($"Creating Network Secu
 var nsg = azure.NetworkSecurityGroups.Def
 .WithRegion(location)
 .WithExistingResourceGroup(groupName)
 .Create();

 //You need a security rule for allowing t
 //Internet
 Console.WriteLine($"Creating a Security R
access");
 nsg.Update()
 .DefineRule("Allow-RDP")
 .AllowInbound()
 .FromAnyAddress()
 .FromAnyPort()
 .ToAnyAddress()
 .ToPort(3389)
 .WithProtocol(SecurityRuleProtoco
 .WithPriority(100)
 .WithDescription("Allow-RDP")
 .Attach()
 .Apply();

 //Any virtual machine needs a network int
 //virtual network
 Console.WriteLine($"Creating network inte
 var nic = azure.NetworkInterfaces.Define(
 .WithRegion(location)
 .WithExistingResourceGroup(groupName)
 .WithExistingPrimaryNetwork(network)
 .WithSubnet(subnetName)
 .WithPrimaryPrivateIPAddressDynamic()
 .WithExistingPrimaryPublicIPAddress(p
 .WithExistingNetworkSecurityGroup(nsg
 .Create();

 //Create the virtual machine
 Console.WriteLine($"Creating virtual mach

The code that you used for creating and enabling the
remote access to the VM is a good way to understand the
relationship between the different components needed
for deploying a VM. You need to understand these
relationships if you need to deploy or reconfigure a VM
using PowerShell or Azure CLI. After you have created
the VM using the modified code in
Listing 1-3, use the following procedure for verifying that
everything is working correctly:

1. Open the Azure portal (https://portal.azure.com).

2. In the Search Resources text box on the middle-top side of the portal,
type az204VMTesting.

3. In the result list, click the name of the virtual machine.

4. On the az204VMTesting virtual machine page, click Networking in the
Settings section.

5. In the Network Security Group list of security rules, shown in Figure 1-1,
ensure that there is a rule named Allow-RDP.

Figure 1-1 Virtual machine network security group

 azure.VirtualMachines.Define(vmName)
 .WithRegion(location)
 .WithExistingResourceGroup(groupName)
 .WithExistingPrimaryNetworkInterface(
 .WithLatestWindowsImage("MicrosoftWin
"2012-R2-Datacenter")
 .WithAdminUsername(adminUser)
 .WithAdminPassword(adminPassword)
 .WithComputerName(vmName)
 .WithSize(VirtualMachineSizeTypes.Sta
 .Create();

 }
 }
}

https://portal.azure.com/

1. On the az204VMTesting page, click Connect in the Settings section in
the navigation list on the left side of the page.

2. On the Connect page, ensure that the RDP tab is selected.

3. Ensure that the Public IP address option is selected in the IP Address
drop-down menu.

4. Click the Download RDP File button.

5. Once the RDP file has been downloaded, double-click the RDP file for
opening the remote session with your VM. You need to provide the
password configured in the code in Listing 1-3.

When configuring remote access in a VM, you need to
consider whether that VM needs to be accessible from
the internet or if you can restrict the access. As a general
rule of thumb, you should avoid configuring remote
access from the internet for production VMs. For these
VMs, you should consider deploying a virtual private
network and remote access the VM using the private IP
instead of a public IP. This way, you can use the public IP
to publish only the service hosted in the VM, like an IIS
service, while getting remote access to the VM using the
private IP.

Need More Review? Network Security Groups
You can find more information about how to manage network security groups using the
Azure portal, Azure PowerShell, or Azure CLI by reviewing the following articles:

https://docs.microsoft.com/en-us/azure/virtual-network/security-overview

https://docs.microsoft.com/en-us/azure/virtual-network/tutorial-restrict-network-
access-to-resources

 Exam Tip

You need to carefully consider when to configure
a VM for remote access from the internet. In
general, you should not configure remote access
over public IPs on production VMs. For those
cases, you should deploy a virtual private
network and connect to your VM using its
private IP.

Create ARM templates

https://docs.microsoft.com/en-us/azure/virtual-network/security-overview
https://docs.microsoft.com/en-us/azure/virtual-network/tutorial-restrict-network-access-to-resources

One of the most significant advantages of using Azure
IaaS is the level of automation that you can achieve when
deploying new services, resources, or infrastructure. One
of the main reasons you can do this is because Microsoft
provides you the Azure Resource Manager (ARM), which
is the deployment and management service in Azure. The
ARM service is in charge of creating, updating, and
deleting the different services you can deploy in your
subscription. You can interact with all actions offered by
the ARM service using the same API. Because of this
same API, no matter which mechanism you use—portal,
PowerShell, Azure CLI, Rest API, or client SDKs— you
get a consistent behavior and result when interacting
with ARM.

When you work with the Azure Resource Manager, there
are some concepts and terms that you need to
understand clearly:

Resource These are the items you can manage in Azure.

Resource group This is a container that you use for holding
resources. You can use any grouping criteria for your resources,
but you need to remember that any single resource needs to be
contained in a resource group. You can also use resource groups
for managing different levels of management access to different
groups of users.

Resource provider A resource provider is a service that offers
different kinds of Azure resources, and they manage the resource’s
lifecycle. For example, the service in charge of providing virtual
machine resources is Microsoft.Compute provider. You can also
use Microsoft.Storage provider for storage accounts or
Microsoft.Network for all networking resources.

Resource Manager template This is the file that you need to
provide to the ARM API when you want to deploy one or more
resources to a resource group or subscription. This file is written
in JavaScript Object Notation (JSON).

The main advantage of using ARM templates is that you
have the definition of all the resources that you want to
deploy in a consistent structure. This allows you to reuse
the same template for deploying the same group of
resources in different subscriptions, resource groups, or
regions. Some common scenarios in which you can take

advantage of the ARM templates are disaster recovery
plan implementations, high-availability configurations,
or automatic provisioning scenarios (such as continuous
deployment scenarios). In the following code snippet,
you can see the most basic structure for an ARM
template.

Click here to view code image

{
"$schema":
"https://schema.management.azure.com/schemas/2015-
01-01/deploymentTemplate.
json#",
 "contentVersion": "",
 "parameters": { },
 "variables": { },
 "functions": [],
 "resources": [],
 "outputs": { }
}

Insofar as the ARM template structure is concerned, only
the $schema, contentVersion, and resources sections are
required to be present in a valid template. Following is a
brief description of each section in a template:

$schema This required section sets the JSON schema that
describes the version of the template you will use in the file. You
can choose between two different schemas depending on the
deployment type:

Resource group deployments You should use
https://schema.management.azure.com/schemas/2015
-01-01/deploymentTemplate.json#.

Subscription deployments You should use
https://schema.management.azure.com/schemas/2018
-05-01/subscriptionDeploymentTemplate.json#.

contentVersion In this required section, you set a value you can
use for providing your internal version number to the template,
such as 1.0.0. This version number is only meaningful for you;
Azure does not use it. Typically, you change the version number
when you make significant changes to the template.

parameters This is an optional section that you can use to set the
values provided to the Resource Manager when you perform a
deployment. You can use customizable template parameters for

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch01_images.xhtml#pg013a
https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json
https://schema.management.azure.com/schemas/2018-05-01/subscriptionDeploymentTemplate.json

different deployments without changing the content of the
template.

variables This optional section contains the values that you will
reuse across the entire template. You use variables for improving
the usability and readability of the template.

functions You can use this optional section for defining your
functions to be used in the template.

resources This is a required section that contains all the
resources that will be deployed or updated by the template.

outputs This optional section defines the values that the
Resource Manager should return once the deployment has
finished.

Listing 1-4 shows the ARM template that you need to use
for deploying new VMs with the same configuration. You
may modify the values of the parameters according to
your needs.

Listing 1-4 ARM template for deploying a VM

Click here to view code image

{

"$schema": "https://schema.management.azure.com/schem
json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "virtualNetworks_az204VNET_name": {
 "defaultValue": "az204demoVNET",
 "type": "string"
 },
 "networkInterfaces_az204NIC_name": {
 "defaultValue": "az204demoNIC",
 "type": "string"
 },
 "virtualMachines_az204VMTesting_name": {
 "defaultValue": "az204demoVM",
 "type": "string"
 },
 "subnets_az204Subnet_name": {
 "defaultValue": "az204demoSubnet",
 "type": "string"
 },
 "virtualMachines_az204VMTesting_id": {
 "defaultValue": "[concat(parameters('virt
 '_OSDisk1_1')]",
 "type": "string"
 },
 "virtualMachines_adminUser": {

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch01_images.xhtml#lis1-4a

 "defaultValue": "azureadminuser",
 "type": "string"
 },
 "virtualMachines_adminpassword": {
 "defaultValue": "Pa$$w0rd",
 "type": "securestring"
 }
 },
 "variables": {
 "osDiskName": "_OSDisk1_1_39c654d89d88405e968
 },
 "resources": [
 {
 "type": "Microsoft.Compute/virtualMachine
 "name": "[parameters('virtualMachines_az2
 "apiVersion": "2018-06-01",
 "location": "westus2",
 "tags": {},
 "scale": null,
 "properties": {
 "hardwareProfile": {
 "vmSize": "Standard_DS2_v2"
 },
 "storageProfile": {
 "imageReference": {
 "publisher": "MicrosoftWindow
 "offer": "WindowsServer",
 "sku": "2012-R2-Datacenter",
 "version": "latest"
 },
 "osDisk": {
 "osType": "Windows",
 "name": "[concat(parameters('
 name'), variables('o
 "createOption": "FromImage",
 "caching": "ReadWrite"
 },
 "dataDisks": []
 },
 "osProfile": {
 "computerName": "[parameters(
 'virtualMachine
 "adminUsername": "azureadminuser"
 "adminPassword": "Pa$$w0rd",
 "windowsConfiguration": {
 "provisionVMAgent": true,
 "enableAutomaticUpdates": tru
 },
 "secrets": [],
 "allowExtensionOperations": true
 },
 "networkProfile": {
 "networkInterfaces": [
 {

"id": "[resourceId('Microsoft.Network/networkInterfac
 ('networkInterfaces_az204NIC_name'))]",
 "properties": {
 "primary": true
 }
 }
]
 }
 },
 "dependsOn": [

"[resourceId('Microsoft.Network/networkInterfaces', p
'networkInterfaces_az204NIC_name'))]"
]
 },
 {
 "type": "Microsoft.Network/networkInterfa
 "name": "[parameters('networkInterfaces_a
 "apiVersion": "2018-10-01",
 "location": "westus2",
 "tags": {},
 "scale": null,
 "properties": {
 "ipConfigurations": [
 {
 "name": "primary",
 "properties": {
 "privateIPAllocationMetho
 "subnet": {

"id": "[resourceId('Microsoft.Network/virtualNetworks
 parameters('virtualNetworks_az204VNET_name'),
 parameters('subnets_az204Subnet_name'))]"
 },
 "primary": true,
 "privateIPAddressVersion"
 }
 }
],
 "dnsSettings": {
 "dnsServers": [],
 "appliedDnsServers": []
 },
 "enableAcceleratedNetworking": false,
 "enableIPForwarding": false,
 "primary": true,
 "tapConfigurations": []
 },
 "dependsOn": [

"[resourceId('Microsoft.Network/virtualNetworks/subne
az204VNET_name'), parameters('subnets_az204Subnet_nam
]
 },

 {
 "type": "Microsoft.Network/virtualNetwork
 "name": "[parameters('virtualNetworks_az2
 "apiVersion": "2018-10-01",
 "location": "westus2",
 "tags": {},
 "scale": null,
 "properties": {
 "resourceGuid": "145e7bfc-8b00-48cf-8
 "addressSpace": {
 "addressPrefixes": [
 "172.16.0.0/16"
]
 },
 "dhcpOptions": {
 "dnsServers": []
 },
 "subnets": [
 {
 "name": "[parameters('subnets
 "properties": {
 "addressPrefix": "172.16.
 }
 }
],
 "virtualNetworkPeerings": [],
 "enableDdosProtection": false,
 "enableVmProtection": false
 },
 "dependsOn": []
 },
 {
 "type": "Microsoft.Network/virtualNetwork

"name": "[concat(parameters('virtualNetworks_az204VNE
parameters('subnets_az204Subnet_name'))]",
 "apiVersion": "2018-10-01",
 "scale": null,
 "properties": {
 "addressPrefix": "172.16.0.0/24"
 },
 "dependsOn": [

"[resourceId('Microsoft.Network/virtualNetworks',
parameters('virtualNetworks_az204VNET_name'))]"
]
 }
]
}

This example has some interesting features. You have
defined the parameters and variables that you will use
throughout the template. If you look at any parameter
definition, you can see that it has three elements—
paramenterName, defaultValue, and type. The type
element is almost self-explanatory; it sets the kind of
value that this parameter will contain. The allowed types
are string, securestring, int, bool, object, secureObject,
and array. The parameterName is also quite
straightforward and is any valid JavaScript identifier that
represents the name of the parameter. However, why use
a defaultValue element instead of a value element? You
use defaultValue because when you define a parameter in
the template file, the only required components are
parameterName and type. The parameter’s value is
provided during the deployment process. If you don’t
provide a value for a parameter that you defined in the
template, then the defaultValue will be used instead. You
should bear in mind that this element is optional.

You can provide values to the parameters that you define
for your template by using the command line or creating
a file with the values that you want to provide to each
parameter. The following example shows the content of a
parameter file for the template shown previously in
Listing 1-4:

Click here to view code image

{
"$schema":
"https://schema.management.azure.com/schemas/2015-
01-01/deploymentParameters.
json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "virtualNetworks_az204VNET_name": {
 "value": "az204demoVNET"
 },
 "networkInterfaces_az204NIC_name": {
 "value": "az204demoNIC"
 },
 "virtualMachines_az204VMTesting_name": {
 "value": "az204demoVM"

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch01_images.xhtml#pg018a

 },
 "subnets_az204Subnet_name": {
 "value": "az204demoSubnet"
 },
 "virtualMachines_az204VMTesting_id": {
 "value": "[concat(parameters(

'virtualMachines_az204VMTesting_name'),

'_OSDisk1_1_39c654d89d88405e968db84b722002d1')]"
 },
 "virtualMachines_adminUser": {
 "value": "azureadminuser"
 },
 "virtualMachines_adminpassword": {
 "value": "Pa$$w0rd"
 }
 }
}

When you are defining the value for a parameter, you can
also use functions to construct dynamic values. If you
take a look at the virtualMachines_az204VMTesting_id
parameter, you can see that its value is set to a function.
In this case, the function returns a string that is the
result of adding the string
_OSDisk1_1_39c654d89d88405e968db84b722002d1 to
the value of the parameter
virtualMachines_az204VMTesting_name.

There are many predefined functions that you can use in
your template. You can even define your custom
functions for those complicated pieces of code that
repeat in your template. When working with custom
functions, beware of some limitations:

Custom functions cannot access template variables, although you
can pass them as a parameter of your function.

Your custom function cannot access the template’s parameters;
instead, they have access only to the parameters that you define in
your function.

Parameters on your custom function cannot have default values.

Your custom function cannot call other custom functions; you only
can call predefined functions.

You cannot use the reference() predefined function.

Note Template Reference
When you are working with ARM templates, it’s useful to consult the template
reference for each type of resource you are configuring. You can review the complete
template reference at https://docs.microsoft.com/en-us/azure/templates/. You can also
review the complete reference of predefined functions at https://docs.microsoft.com/en-
us/azure/azure-resource-manager/resource-group-template-functions.

When I initially talked about the resources that you need
for deploying a VM, I explained that there are some
resources that you need for the VM to run correctly. For
example, you need at least one virtual disk for storing the
operating system. You also need a virtual network for
connecting the VM with the world, and you need a
virtual network interface card for connecting the VM to
the virtual network. All those dependencies are defined
in an ARM template by using the element dependsOn on
each resource type. This element accepts a list of
resource names, separated by commas, that define the
resources that need to be deployed before the resource
can be deployed. As a best practice to avoid ambiguity,
you should reference any resource that you put on the
dependsOn element by using its provider namespace and
type. You can do this by using the resourceId()
predefined function.

If you review the example, the virtual network
virtualNetworks_az204VNET_name needs to be
deployed before subnets_az204Subnet_name can be
deployed (see Figure 1-2). The dependsOn element is
required because the resources defined in the template
are not deployed in the same order that appears in the
template.

https://docs.microsoft.com/en-us/azure/templates/
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-template-functions

Figure 1-2 Resource dependencies

Note Child Elements Versus Dependencies
Some resources can contain other resources as child elements. This parent-child
relationship is not the same as a dependency relationship. The parent-child relationship
does not guarantee that the parent will be deployed before its children. You need to use
the dependsOn element to ensure the correct deployment order.

Once you are happy with your template, you can deploy
it to your Azure subscription by using PowerShell, Azure
CLI, Azure Cloud Shell, or REST API. Another exciting
feature is that you can store your template JSON files in
a remote location. This remote location needs to be
publicly available. If your template contains information
that shouldn’t be public, you can provide that
information as an inline parameter during the

deployment. If you prefer your template not to be open
to the world, you can also store your template in a
Storage account and protect it by using a SAS token.

The following command shows how to deploy the
example template using the template file az204-
template.json and the properties file az204-
parameters.json.

Click here to view code image

#!/bin/bash
#Azure CLI template deployment
az group create --name AZ204-ResourceGroup --
location "West US"
az group deployment create \
 --name AZ204DemoDeployment \
 --resource-group AZ204-ResourceGroup \
 --template-file az204-template.json \
 --parameters @az204-parameters.json

The previous command creates the resource group called
AZ204-ResoureGroup in the West US region. Then it
creates a new deployment called
AZ204DemoDeployment that will generate the resources
defined in the az204-template.json template using the
values provided in the parameters file named az204-
parameters.json. Note the use of the @ symbol in front of
the parameters file. This @ symbol is required by the az
group deployment create command.

 Exam Tip

ARM templates are powerful tools that enable
you to create custom functions for automating
some repeating actions. When you create your
custom function, remember the limitations when
calling predefined or other custom functions.
You should also bear in mind the visibility of the
template variables and parameters when
working with custom functions.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch01_images.xhtml#pg021a

Create container images for solutions by using
Docker

With the evolution of technology and the emergence of
the cloud, you need to meet other challenges presented
by this technical evolution. One of these requirements is
the ability to deploy pieces of software in a reliable and
quick manner. Virtualization technologies were one of
the keys for making this kind of reliable and quick
deployment possible.

However, in the context of operating system
virtualization using virtual machines, one of the main
drawbacks is the fact that you have a complete set of
binaries, libraries, and resources that are duplicated
between virtual machines. This is where containerization
provides a different approach to deploying pieces of
software across multiple servers reliably and quickly.

A container is a piece of software that packages your
code and all its dependencies in a single package that can
be run directly by the computer environment. When a
container is executed, it uses a read-only copy of the
shared libraries of the operating system that your code
needs to run. This reduces the required amount of
resources that a container needs to run your code when
compared to running the same code on a virtual
machine. Container technology was initially born on
Linux environments, but it also has been ported to the
Microsoft Windows environment. There are several
implementations of container technology in the Linux
ecosystem, but Docker Containers are the most widely
used.

When you move the container technology to an
enterprise environment, scaling dynamically and
automatically is a problem, just as it is with virtual
machines. There are several available solutions in the
market, such as Docker Swarm, DC/OS, or Kubernetes.

All these solutions are orchestration solutions that
automatically scale and deploy your containers in the
available resources.

Azure provides several services that allow you to deploy
your application in a container. It doesn’t matter if you
decide to use Azure Kubernetes Services, Service Fabric,
Azure Web Apps for Containers, Azure Container
Registry, or Azure Container Instances; all these services
use the same container technology implementation,
Docker.

Before you can deploy your application to any of these
services, you need to put your application into a
container by creating an image of your container. A
container image is a package that contains everything
you need—code, libraries, environment variables, and
configuration files—to run your application. Once you
have your container images, you can create instances of
the image for running the code, each of which is a
container. If you need to make modifications to one of
your containers, you need to modify the image definition
and redeploy the container. In general, any change that
you make to a container is not persisted across reboots.
If you need to ensure that some information in your
container is not deleted when a container reboots, you
need to use external mount points, known as volumes.

When you create your container image, you must define
your application’s requirements, which are placed in a
file called Dockerfile. This Dockerfile contains the
definition and requirements needed for creating your
container image. Use the following high-level procedure
for creating an image:

1. Create a directory for the new image. This directory contains your
Docker file, your code, and any other dependency that you need to
include in the image, and that is not available in a separate image.

2. Create the Dockerfile. This file contains the definition of your image.
Listing 1-5 shows an example of a functional Dockerfile.

3. Open a command line. You use this command line to run the Docker
commands.

4. Create the container image. Use the command docker build to
create the image. When you create an image, you should add a tag to
identify the image and the version. If you 23don’t set a version number,
docker automatically assigns the default value latest. You need to
provide the path of the folder that contains the Dockerfile. This
command has the following structure:

Click here to view code image

docker build --tag=<tag_name>[:<version>]
<dockerfile_dir>

5. List the newly created image. Once Docker finishes downloading all
the dependencies for your image, you can ensure that your image has
been created by executing this command:

docker image ls

Listing 1-5 Dockerfile example

Click here to view code image

Need More Review? Best Practices for Writing Dockerfiles
When you are writing your Dockerfile, you should bear in mind some best practices
detailed at https://docs.docker.com/develop/develop-images/dockerfile_best-practices/.

Use an official Python runtime as a parent image
FROM python:2.7-slim

Set the working directory to /app
WORKDIR /app

Copy the current directory contents into the contai
COPY . /app

Install any needed packages specified in requiremen
RUN pip install --trusted-host pypi.python.org -r req

Make port 80 available to the world outside this co
EXPOSE 80

Define an environment variable
ENV NAME World

Run app.py when the container launches
CMD ["python", "app.py"]

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch01_images.xhtml#pg023a
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch01_images.xhtml#lis1-5a
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

For complex applications, creating an image for each
component of the application can become a complicated
task. For scenarios in which you need to define and run
multiple containers, you can use Docker Compose. You
can also think of Docker Compose as the definition of
your images for a production environment. If your
application is comprised of several images, you can
define the relationship between those images and how
they are exposed to the external world. 24Using Docker
Compose you can also set the limits of the resources
assigned to each container when it executes and define
what happens if one container associated with a service
fails.

A service in the Docker world is each of the pieces that
are part of your application. A service has a one-to-one
relationship with an image. It’s important to remember
that a service can have multiple instances of the same
image, which means you can have various containers.
The docker-composer.yaml file contains the definitions
of the relationships and requirements needed for
running your application.

Need More Review? Fully Functional Example
You can run a fully functional example in your local environment by reviewing the
instructions published by Microsoft at https://docs.microsoft.com/en-
us/azure/aks/tutorial-kubernetes-prepare-app.

 Exam Tip

The modifications that you make to a container
while it’s running do not persist if you reboot the
container. If you need to make changes to the
content of a container, you need to modify the
image container and then redeploy the
container. If you need your container to save
information that needs to be persisted across
reboots, you need to use volumes.

https://docs.microsoft.com/en-us/azure/aks/tutorial-kubernetes-prepare-app

Publish an image to the Azure Container Registry

The main purpose of creating an image is to make your
code highly portable and independent from the server
that executes your code. To achieve this objective, your
image needs to be accessible by all the servers that can
execute your image. Therefore, you need to store your
image in a centralized storage service.

Azure Container Registry (ACR) is Microsoft’s
implementation of a Docker registry service, based on
the Docker Registry 2.0 definition. Using this managed
Docker registry service, you can privately store your
images for later distribution to container services, such
as Azure Managed Kubernetes Service. You can also use
ACR for building your images on the fly and automating
the building of the image based on the commits of your
source code.

Before you can upload an image to your private container
registry, you need to tag the image. To do this, you need
to include the name of your private container registry in
the tag. You will use the name structure
<acr_name>.azurecr.io/[repository_name][:version].
The following list breaks down each part of the tag:

acr_name This is the name that you gave to your registry.

repository_name This is an optional name for a repository in
your registry. ACR allows you to create multilevel repositories
inside the registry. If you want to use a custom repository, just put
its name in the tag.

version This is the version that you use for the image.

Use the following procedure for pushing your image to
your ACR registry. These steps assume that you already
created an Azure Container Registry and installed the
latest Azure CLI:

1. Log in to your Azure subscription.

az login

2. Log in to your registry using this command:

Click here to view code image

az acr login –--name <acr_name>

3. Tag the image that you want to upload to the registry using this
command:

Click here to view code image

docker tag foobar
<acr_name>.azurecr.io/<repository_name>/<image_name>

4. Push the image to the registry using this command:

Click here to view code image

docker push
<acr_name>.azurecr.io/<repository_name>/<image_name>

When Docker finishes pushing your image to the
registry, you can browse the repositories in your registry,
as shown in Figure 1-3, to verify that it has been
successfully uploaded.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch01_images.xhtml#pg025-1a
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch01_images.xhtml#pg025-2a
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch01_images.xhtml#pg025-3a

Figure 1-3 Browse container repository

The next section reviews how to run the container from
the image you have already pushed to the registry.

 Exam Tip

A container registry is useful not only for storing
your container images but also for automating
the deployment of containers into the Azure
Container services. Any continuous delivery
service, like Azure Pipelines, would need a
container registry for deploying the container
images.

Run containers by using Azure Container Instance

Once you have created your image and made it available
to Azure services by pushing it to your container registry,
it is time to run the container in any of the services that
Azure offers to you. Follow this high-level procedure:

1. Create as many images as your application needs to run correctly.

2. Upload or push your application images to a container registry.

3. Deploy the application.

When you want to create an image in the Azure
Container Instance (ACI) service from your Azure
Container Registry (ACR), you need to authenticate
before you can pull the image from your ACR. For the
purpose of demonstration, the following procedure uses
Admin account authentication to show how to create and
run a container in ACI:

1. Sign in to the Azure cloud shell (https://shell.azure.com).

2. In the Shell Selector, select Bash.

3. Open the online editor by clicking the curly brace icon to the right of the
Shell Selector.

4. Use the script in Listing 1-6 to create a service principal password and
to create a container from your images in the registry.

Listing 1-6 Creating a service principal password

Click here to view code image

#!/bin/bash

#Some variable definition useful for the script
ACR_NAME=az204demo
SP_NAME=az204demo_sp
IMAGE_TAG=az204demo.azurecr.io/develop/foobar:late
RESOURCE_GROUP=AKSdemo-RG
APP_NAME=foobar
APP_DNS_NAME=prueba

#Get the registry ID. You will need this ID for cr
#service principal
ACR_ID=$(az acr show --name $ACR_NAME --query id -

#Get the ACR login server
ACR_SERVER=$(az acr show --name $ACR_NAME --query

#Get the service principal password. We will grant

https://shell.azure.com/
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch01_images.xhtml#lis1-6a

5. In the top-right corner of the online editor, below the user information,
click the ellipsis icon, and then click Save. Provide a name for the script.

6. In the Azure Cloud Shell, execute the script by typing the following
command in the bash shell:

sh <your_script_name>

Once you have executed this procedure, you can access
your container by looking for your container’s name in
the Azure portal. You can also access the application that
you put in this container by entering the URL of the
container into a browser. The URL for this container will
be in the form of <APP_DNS_NAME>.
<region>.azurecontainer.io, based on the value of the
variable APP_DNS_NAME that you provided in the
previous script.

 Exam Tip

You can use several authentication mechanisms,
such as an individual login with Azure AD, an
admin account, or a service principal.
Authentication with Azure AD is a good
approach for your development and testing
environment. Using the admin account is
disabled by default and is discouraged for

#principal
echo "Generating Service Principal password"
SP_PASS=$(az ad sp create-for-rbac --name http://$
--role acrpull --query password --output tsv)

#Get the App ID associated to the service principa
SP_ID=$(az ad sp show --id http://$SP_NAME --query

echo "Service principal ID: $SP_ID"
echo "Service principal password: $SP_PASS"

#Create the container in the Container Instance se
az container create --resource-group $RESOURCE_GRO
$IMAGE_TAG --cpu 1 --memory 1 --registry-login-ser
$SP_ID --registry-password $SP_PASS --dns-name-lab

production environments because you need to
put the admin account password in your code.
For production environments, the recommended
way to pull images is using service principals for
authentication with the ACR.

SKILL 1.2: CREATE AZURE APP
SERVICE WEB APPS

Azure App Service is a Platform as a Service (PaaS)
solution that Microsoft offers to assist with developing
your applications, mobile app back end, or REST APIs
without worrying about the underlying infrastructure.

You use most of the more popular programming
languages—.NET, .NET Core, Java, Ruby, Node.js, PHP,
or Python—on top of your preferred platform (Linux or
Windows). Azure App Service provides you with
enterprise-level infrastructure capabilities, such as load
balancing, security, autoscaling, and automated
management. You can also include Azure App Service in
your continuous deployment lifecycle thanks to the
integration with GitHub, Docker Hub, and Azure
DevOps.

This skill covers how to

Create an Azure App Service web app

Enable diagnostics logging

Deploy code to a web app

Configure web app settings including SSL, API, and
connection strings

Implement autoscaling rules, including scheduled
autoscaling and scaling by operational or system metrics

Create an Azure App Service web app

Azure App Service is a PaaS service based on HTTP that
allows you to deploy your web or mobile back-end
applications or REST APIs to the cloud. Using Azure App
Services enables you to develop your application in any
of the most popular languages of the moment, like .NET,
.NET Core, Java, Ruby, Node.js, PHP, or Python. Azure
App Services also offers you the flexibility of working
with any of your favorite platforms: Windows, Linux, or
Linux-based containers. The advantage of using Azure
App Services is not limited only to the different options
for developing. It also integrates quite well with different
continuous integration and deployment platforms.

When you plan to create an Azure App Service, there are
some concepts about how your application performs that
you need to understand. Every App Service needs
resources to execute your code. Virtual machines are the
base of these resources. Although Azure automatically
provides the low-level configuration for running these
virtual machines, you still need to provide some high-
level information. An App Service plan manages the
group of virtual machines that host your web application.

You can think of an App Service plan like a server farm
that runs in a cloud environment. This also means that
you are not limited to running a single App Service in an
App Service plan. You can share the same computing
resources between several App Services that you deploy
on the same App Service plan.

When you create a new App Service plan, you need to
provide the following information:

Region This is the region where you deploy the App Service plan.
Any App Service in this App Service plan is placed in the same
region as the App Service plan.

Number of instances This is the number of VMs added to your
App Service plan. Bear in mind that the maximum number of
instances that you can configure for your App Service plan
depends on the pricing tier that you select. You can scale the
number of instances manually or automatically.

Size of the instances You configure the size of the VM used in
the App Service plan.

Operating system platform This controls whether your web
application runs on Linux or Windows VMs. Depending on the
operating system, you have access to different pricing tiers.
Beware that once you have selected the operating system platform,
you cannot change the OS for the App Service without re-creating
the App Service.

Pricing tier This sets the features and capabilities available for
your App Service plan and how much you pay for the plan. For
Windows VMs, two basic pricing tiers use shared VMs—F1 and D1.
This shared tier is not available for Linux VMs. When you use the
basic pricing tiers, your code runs alongside other Azure
customers’ code.

When you run an App Service in an App Service plan, all
instances configured in the plan execute the code
corresponding to your app. This means that if you have
five virtual machines, any app you deploy into the App
Service runs on each of the five VMs. Other operations
related to the App Service, such as additional
deployment slots, diagnostic logs, backups, or WebJobs,
also are executed using the resources of each virtual
machine in the App Service plan.

Azure App Service also provides you with the ability to
integrate the authentication and authorization of your
web application, REST API, a mobile app back end, or
even Azure Functions. You can use different well-known
authentication providers, like Azure, Microsoft, Google,
Facebook, and Twitter, for authenticating users in your
application. You can also use other authentication and
authorization mechanisms on your apps. However, by
using this security module, you can provide a reasonable
level of security to your application with minimal or even
no required code changes.

There are situations when your application may require
access to resources on your on-premises infrastructure,
and App Service provides you with two different
approaches:

VNet integration This option is available only for Standard,
Premium, or PremiumV2 pricing tiers. This integration allows
your web app to access resources in your virtual network. If you
create a site-to-site VPN with your on-premises infrastructure, you
can access your private resources from your web app.

Hybrid connections This option depends on the Azure Service
Bus Relay and creates a network connection between the App
Service and an application endpoint. This means that hybrid
connections enable the traffic between specific TCP host and port
combinations.

The following procedure shows how to create an App
Service plan and upload a simple web application based
on .NET Core using Visual Studio 2019. Ensure that you
have installed the ASP.NET and web development
workload, and you have installed the latest updates.

1. Open Visual Studio 2019 on your computer.

2. In the Visual Studio 2019 Home window, in the column named Get
Started, click the Continue Without Code link at the bottom of the
column.

3. Click the Tools menu and choose Get Tools And Features. Verify that
the ASP.NET And Web Development In The Web & Cloud section is
checked.

4. In the Visual Studio 2019 window, click File > New > Project to open
the New Project window.

5. In the Create a New Project window, select C# in the drop-down menu
below the Search For Templates text box at the top right of the window.

6. In the All Project Types drop-down menu, select Web.

7. In the list of templates on the right side of the window, select ASP.NET
Core Web Application.

8. In the Configure Your New Project window, complete the following
steps:

1. Select a name for the project.

2. Enter a path for the location of the solution.

3. In the Solution drop-down menu, select Create A New
Solution.

4. Enter a name for the solution.

9. Click the Create button in the bottom-right corner of the Configure Your
New Project window. This opens the Create A New ASP.NET Core Web
Application window.

10. In the Create A New ASP.NET Core Web Application window, ensure
that the following values are selected in the two drop-down menus at
the top of the window:

1. .NET Core

2. ASP.NET Core 3.1

11. Select Web Application from the Project Templates area in the center of
the window.

12. Uncheck the option Configure For HTTPS on the bottom-right side of
the window.

13. Click the Create button in the bottom-right corner of the Create A New
ASP.NET Core Web Application window.

At this point, you have created a simple ASP.NET Core
web application. You can run this application in your
local environment to ensure that the application is
running correctly before you publish the application to
Azure.

Now you need to create the Resource Group and App
Service plan that hosts the App Service in Azure:

1. In your Visual Studio 2019 window, ensure that you have opened the
solution of the web application that you want to publish to Azure.

2. On the right side of the Visual Studio window, in the Solution Explorer
window, right-click the project’s name.

3. In the contextual menu, click Publish. This opens the Pick A Publish
Target window.

4. In the Pick A Publish Target window, make sure that App Service is
selected from the list of Available Targets on the left side of the window.

5. In the Azure App Service section, in the right side of the window, ensure
that Create New Option is selected.

6. In the bottom-right corner of the window, click the Create Profile
button, which opens the Create App Service window.

7. In the Create App Service window, add a new Azure account. This
account needs to have enough privileges in the subscription for creating
new resource groups, app services, and an App Service plan.

8. Once you have added a valid account, you can configure the settings for
publishing your web application, as shown in Figure 1-4.

Figure 1-4 Creating an app service

9. In the App Name text box, enter a name for the App Service. By default,
this name matches the name that you gave to your project.

10. In the Subscription drop-down menu, select the subscription in which
you want to create the App Service.

11. In the Resource Group drop-down menu, select the resource group in
which you want to create the App Service and the App Service plan. If
you need to create a new resource group, you can do so by clicking the
New link on the right side of the drop-down menu.

12. To the right of the Hosting Plan drop-down menu, click the New link to
open the Configure Hosting Plan window.

13. In the Configure Hosting Plan window, type a name for the App Service
plan in the App Service Plan text box.

14. Select a region from the Location drop-down menu.

15. Select a virtual machine size from the Size drop-down menu.

16. Click the OK button in the bottom-right corner of the window. This
closes the Configure Hosting Plan window.

17. At the bottom-right corner of the Create App Service window, click the
Create button. This starts the creation of the needed resources and the
upload of the code to the App Service.

18. Once the publishing process has finished, Visual Studio opens your
default web browser with the URL of the newly deployed App Service.
This URL will have the structure
https://<your_app_service_name>.azurewebsites.net.

Depending on the pricing tier that you selected, some
features are enabled, such as configuring custom
domains or configuring SSL connections for your web
applications. For production deployment, you should use
Standard or Premium pricing tiers. As your feature needs
change, you can choose different pricing tiers. You can

start by using the free tier, F1, in the early stages of your
deployment and then increase to an S1 or P1 tier if you
need to make backups of your web application or need to
use deployment slots.

Even if the premium pricing tiers do not fit your
computer requirements, you can still deploy a dedicated
and isolated environment, called Isolated pricing tier.
This tier provides you with dedicated VMs running on
top of dedicated virtual networks where you can achieve
the maximum level of scale-out capabilities. Bear in
mind that you cannot use the shared tier D1 to deploy a
Linux App Service plan.

 Exam Tip

Because Azure App Service does not support the
same features for Linux and Windows, you
cannot mix Windows and Linux apps in the
same resource group in the same region. For
more information about the limitations of Linux
App Services, review the following article:
https://docs.microsoft.com/en-us/azure/app-
service/containers/app-service-linux-intro.

Enable diagnostics logging

Troubleshooting and diagnosing the behavior of an
application is a fundamental operation in the lifecycle of
every application. This is especially true if you are
developing your application. Azure App Service provides
you with some mechanisms for enabling diagnostics
logging at different levels that can affect your
application:

Web server diagnostics These are message logs generated from
the web server itself. You can enable three different types of logs:

Detailed error logging This log contains detailed
information for any request that results in an HTTP

https://docs.microsoft.com/en-us/azure/app-service/containers/app-service-linux-intro

status code 400 or greater. When an error 400 happens,
a new HTML file is generated, containing all the
information about the error. A separate HTML file is
generated for each error. These files are stored in the file
system of the instance in which the web app is running.
A maximum of 50 error files can be stored. When this
limit is reached, the oldest 26 files are automatically
deleted from the file system.

Failed request tracing This log contains detailed
information about failed requests to the server. This
information contains a trace of the IIS components that
were involved in processing the request. It also contains
the time taken by each IIS component. These logs are
stored in the file system. The system creates a new folder
for each new error, applying the same retention policies
as for detailed error logging.

Web server logging This log registers the HTTP
transaction information for the requests made to the web
server. The information is stored using the W3C
extended log file format. You can configure custom
retention policies to these log files. By default, these
diagnostic logs are never deleted, but they are restricted
by the space they can use in the file system. The default
space quota is 35 MB.

Application diagnostics You can send a log message directly
from your code to the log system. You use the standard logging
system of the language that you use in your app for sending
messages to the application diagnostics logs. This is different from
Application Insights because application diagnostics are just
logged information that you register from 33your application. If
you want your application to send logs to Application Insights, you
need to add the Application Insights SDK to your application.

Deployment diagnostics This log is automatically enabled for
you, and it gathers all information related to the deployment of
your application. Typically, you use this log for troubleshooting
failures during the deployment process, especially if you are using
custom deployment scripts.

You can enable the different diagnostics logs, shown in
Figure 1-5, using the Azure portal. When you enable
application logging, you can select the level of error log
that will be registered on the files. These error levels are

Disabled No errors are registered.

Error Critical and Error categories are registered.

Warning Registers Warning, Error, and Critical categories.

Information Registers Info, Warning, Error, and Critical log
categories.

Verbose Registers all log categories (Trace, Debug, Info,
Warning, Error, and Critical).

Figure 1-5 Enabling diagnostics logging

When you configure application logging, you can set the
location for storing the log files. You can choose between
saving the logs in the file system or using Blob Storage.
Storing application logs in the file system is intended for
debugging purposes. If you enable this option, it will be
automatically disabled after 12 hours. If you need to
enable the application logging for a longer period, you
need to save the log files in Blob Storage. When you
configure application logging for storing the log files in
Blob Storage, you can also provide a retention period in
days. When log files become older than the value that
you configure for the retention period, the files are
automatically deleted. By default, there is no retention
period set. You can configure the web server logging in

the same way that you configure the storage for your
application logging.

If you configure application or web server logging for
storing the log files in the file system, the system creates
the following structure for the log files:

/LogFiles/Application/ This folder contains the logs files from
the application logging.

/LogFiles/W3SVC#########/ This folder contains the files
from the failed request traces. The folder contains an XSL file and
several XML files. The XML files contain the actual tracing
information, whereas the XSL file provides the formatting and
filtering functionality for the content stored in the XML files.

/LogFiles/DetailedErrors/ This folder contains the *.htm files
related to the detailed error logs.

/LogFiles/http/RawLogs/ This folder contains the web server
logs in W3C extended log format.

/LogFiles/Git This folder contains the log generated during the
deployment of the application. You can also find deployment files
in the folder D:\home\site\deployments.

You need this folder structure when you want to
download the log files. You can use two different
mechanisms for downloading the log files: FTP/S or
Azure CLI. The following command shows how to
download log files to the current working directory:

Click here to view code image

az webapp log download --resource-group <Resource
group name> --name <App name>

The logs for the application <App name> are
automatically compressed into a file named
webapp_logs.zip. Then, this file is downloaded in the
same directory where you executed the command. You
can use the optional parameter --log-file for downloading
the log files to a different path in a different zip file.

There are situations in which you may need to view the
logs for your application in near real time. For these
situations, App Service provides you with log streams.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch01_images.xhtml#pg034a

Using streaming, you can see the log messages as they
are being saved to the log files. Any text file stored in the
D:\home\LogFiles\ folder is also displayed on the log
stream. You can view log streams by using the embedded
viewer in the Azure portal, on the Log Stream item under
the monitoring section in your App Service. You can also
use the following Azure CLI command for viewing your
application or web server logs in streaming:

Click here to view code image

az webapp log tail --resource-group <Resouce
group name> --name <App name>

Need More Review? Integrate Logs with Azure Monitor
You can also send the diagnostics information from your Windows or Linux App
Services to Azure Monitor. At the time of this writing, this feature is in preview. You can
get more information about how to integrate your Azure App Service logs with Azure
Monitor by reviewing the following article:
https://azure.github.io/AppService/2019/11/01/App-Service-Integration-with-Azure-
Monitor.html.

 Exam Tip

When you are planning to configure the
application logging, you should consider that not
all the programming languages’ codes can write
the log information in Blob Storage. You can use
Blob Storage only with .NET application logs. If
you use Java, PHP, Node.js, or Python, you need
to use the application log file system option.

Deploy code to a web app

As part of the typical development lifecycle of your
application, there is a point where you need to deploy
your code to an Azure App Service. The “Create an Azure
App Service web app” section earlier in this chapter
reviews how to deploy the code directly from Visual
Studio 2019. This section explains how to deploy your
code using other alternatives more suitable to

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch01_images.xhtml#pg034-1a
https://azure.github.io/AppService/2019/11/01/App-Service-Integration-with-Azure-Monitor.html

continuous deployment or continuous integration
workflows.

When you are developing your web application, you need
to test your code on both your local environment and in
development or testing environments that are similar to
the production environment. Starting with the Standard
pricing tier, Azure App Service provides you with the
deployment slots. These slots are deployments of your
web application that reside in the same App Service of
your web application. A deployment slot has its
configuration and host name. You can use these
additional deployment slots for testing your code before
moving to the production slot. The main benefit of using
these deployment slots is that you can swap these slots
without any downtime. You can even configure an
automated swap of the slots by using Auto Swap.

When you plan for deploying your web application into
an App Service, Azure offers you several options:

ZIP or WAR files When you want to deploy your application,
you can package all your files into a ZIP or WAR package. Using
the Kudu service, you can deploy your code to the App Service.

FTP You can copy your application files directly to the App
Service using the FTP/S endpoint configured by default in the App
Service.

Cloud synchronization Powered by the Kudu deployment
engine, this method allows you to have your code in a OneDrive or
Dropbox folder, and it syncs that folder with the App Service.

Continuous deployment Azure can integrate with GitHub,
BitBucket, or Azure Repos repositories for deploying the most
recent updates of your application to the App Service. Depending
on the service, you can use the Kudu build server, or Azure
Pipelines for implementing a continuous delivery process. You can
also configure the integration manually with other cloud
repositories like GitLab.

Your local Git repository You can configure your App Service
as a remote repository for your local Git repository and push your
code to Azure. Then the Kudu build server automatically compiles
your code for you and deploys to the App Service.

ARM template You can use Visual Studio and an ARM template
for deploying your code into an App Service.

Note Kudu
Kudu is the platform that is in charge of the Git deployments in Azure App Service. You
can find more detailed information on its GitHub site at
https://github.com/projectkudu/kudu/wiki.

The following example shows how to deploy your code to
a web app using Azure Pipelines. For this example, you
need to have your code deployed in an Azure Repos
repository. If you don’t already have your code in an
Azure Repos repository, you can use the following article
for creating a new repo: https://docs.microsoft.com/en-
us/azure/devops/repos/git/creatingrepo.

1. Open the Azure portal (https://portal.azure.com).

2. In the search text box at the top of the Azure portal, type the name of
your App Service.

3. In the result list below the search text box, click your App Service.

4. On your App Service blade, on the menu on the left side of the page,
under the Deployment section, click Deployment Center.

5. On the Deployment Center, shown in Figure 1-6, in the source control
step, click Azure Repos.

6. At the bottom of the page, click Continue.

7. In the Build Provider step, click Azure Pipelines (Preview) and click
Continue at the bottom of the page.

8. In the Configure step, on the Code section, select your organization in
the Azure DevOps Organization drop-down menu.

9. In the Project drop-down menu, select the project with the repository
that contains the code that you want to deploy to the Azure App Service.

10. In the Repository drop-down menu, select the repository that contains
your code.

11. In the Branch drop-down menu, select the branch that you want to
deploy.

12. In the Build section, in the Web Application Framework drop-down
menu, select the appropriate framework for your code.

13. Click the Continue button at the bottom of the page.

14. In the Summary step, review the details for the configuration.

15. At the bottom of the page, click Finish.

At this point, you have configured an Azure Pipeline in
your Azure Repo that automatically deploys your code to
the Azure App Service. When you make a commit to the
branch that you selected in the previous example, the
Azure Pipeline automatically uses the code in the last

https://github.com/projectkudu/kudu/wiki
https://docs.microsoft.com/en-us/azure/devops/repos/git/creatingrepo
https://portal.azure.com/

commit. Once you have configured the continuous
deployment for your Azure App Service, you can review
the status of the different deployments in the
Deployment Center of your Azure App Service.

Figure 1-6 Enabling diagnostics logging

Need More Review? APP Service Deployment Examples
You can review samples of the different types of deployments by following the cases
published in the following articles:

Deploy ZIP or WAR files: https://docs.microsoft.com/en-us/azure/app-
service/deploy-zip

Deploy via cloud sync: https://docs.microsoft.com/en-us/azure/app-
service/deploy-content-sync

Deploy from local Git: https://docs.microsoft.com/en-us/azure/app-
service/deploy-local-git

When you deploy your code to an Azure App Service, you
can do it in different deployment slots. A deployment slot
is a live app that is different from the main app. Each
deployment slot has its own host name and group of
settings. You usually use the various slots as a staging
environment for testing purposes. You can switch
between the different slots without losing requests.
Deployment slots are available only to Standard,
Premium, and Isolated App Services tiers.

Need More Review? Deployment Slots

https://docs.microsoft.com/en-us/azure/app-service/deploy-zip
https://docs.microsoft.com/en-us/azure/app-service/deploy-content-sync
https://docs.microsoft.com/en-us/azure/app-service/deploy-local-git

You can learn more about how to work with deployment slots by reviewing the following
article: https://docs.microsoft.com/en-us/azure/app-service/deploy-staging-slots.

 Exam Tip

You can use different mechanisms for deploying
your code into an Azure App Service. If you
decide to use continuous deployment systems
for deploying your code, like Azure Repos, or
GitHub, remember that you need to authorize
your continuous deployment system before you
can perform any deployment.

Configure web app settings including SSL, API, and
connection strings

After you have created your App Service application, you
can manage the various parameters that may affect your
application. You can access these settings in the
Configuration menu on the Settings section in the App
Service blade. The available parameters are grouped by
the following four main categories of settings:

Application Settings You can configure the environment
variables that are passed to your code. Using these settings is
equivalent to setting the same variables in the <appSettings>
section in the Web.config or appsettings.json files in an ASP.NET
or ASP.NET Core project. If you set a variable in this section that
matches a variable in Web.config or appsettings.json files, the
value of the variables in the configuration files will be replaced
with the value in your Azure Web App settings. These settings are
always encrypted at rest, that is, when they are stored.

Connection Strings You use this section for configuring the
connection strings for the database that your code needs to use.
This is similar to using the <connectionString> section in the
Web.config or appsettings.json files in ASP.NET or ASP.NET Core
projects.

General Settings These settings are related to the environment
and platform in which your app runs. You can control the
following items:

Stack Settings You configure the stack and the version
used for running your application.

https://docs.microsoft.com/en-us/azure/app-service/deploy-staging-slots

Stack You can choose between .NET Core,
.NET, Java, PHP, and Python.

Version This is the version for the stack that
you chose in the previous setting.

Platform Settings This section controls the different
settings related to the platform that runs your code:

Platform This setting controls whether your
application runs on a 32- or 64-bit platform.

Managed Pipeline Version Configures the
IIS pipeline mode. You should set this to
classic if you need to run a legacy application
that requires an older version of IIS.

FTP State Configures the possibility of using
FTP or FTPS to deploy your web app to the
Azure App Service. By default, both FTP and
FTPS protocols are enabled.

HTTP Version This enables the HTTPS/2
protocol.

Web Sockets If your application uses SignalR
or socket.io, you need to enable web sockets.

Always On Enabling this setting means your
app is always loaded. By default, the
application is unloaded if it is idle for some
amount of time. You can configure this idle
timeout in the host.json project file. The default
value for App Service is 30 minutes.

ARR Affinity Enabling this setting ensures
that client requests are routed to the same
instance for the life of the session. This setting
is useful for stateful applications but can
negatively affect stateless applications.

Debugging Enable remote debugging options so you
can directly connect from your IDE to the Azure App
Service for debugging your ASP.NET, ASP.NET Core, or
Node.js apps. This option automatically turns off after 48
hours.

Incoming Client Certificates If you require mutual
SSL authentication for your application, you need to
enable this option.

Default Documents This setting configures which web page is
displayed at the root URL of your app. You can set a list of
different default documents, where the first valid match is shown
at the root URL of your website.

Path Mappings The settings in this section depend on the type
of operating system that you choose for your Azure App Service:

Windows Apps (Uncontainerized) These settings
are similar to the ones that you can find in IIS:

Handler Mappings You can configure
custom script processors for different file
extensions.

Virtual Applications And Directories This
setting allows you to add additional virtual
directories or applications to your App Service.

Containerized Apps You can configure the mount
points that are attached to the containers during the
execution. You can attach up to five Azure files or blob
mount points per app. Figure 1-7 shows the dialog box
for configuring an Azure File mount point.

Figure 1-7 Enabling diagnostics logging

Once you have created an app setting or connection
string variable, you can access these values from your
code by using environment variables. The following code
snippet shows how to access an app setting named
testing-var1 and connection string named testing-
connsql1 from a PHP page:

Click here to view code image

<?php
 $testing_var1 = getenv('APPSETTING_testing-
var1')

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch01_images.xhtml#pg040a

 $connection_string =
getenv('SQLAZURECONNSTR_testing-connsql1')
?>

As you can see in the previous code snippet, you need to
prepend the string APPSETTING_ to your app setting
variable’s name. In the case of connection strings, the
string that you need to prepend to your connection
string’s name depends on the type that you configure in
the connection string in the Azure portal:

SQL Databases SQLAZURECONNSTR_

SQL Server SQLCONNSTR_

MySQL MYSQLCONNSTR_

PostgreSQL POSTGRESQLCONNSTR_

Custom CUSTOMCONNSTR_

For ASP.NET applications, you can also access app
settings and connection strings by using the traditional
ConfigurationManager. If you decide to use the
ConfigurationManager, you don’t need to prepend any
string to the name of your app setting or connection
string. The following code snippet shows how to access
your app settings or connection string from ASP.NET
code:

Click here to view code image

System.Configuration.ConfigurationManager.AppSettings["testing-
var1"]
System.Configuration.ConfigurationManager.ConnectionStrings["testing-
connsql1"]

When you are configuring an Azure web app for a
production environment, you usually need to secure the
connections with the web app. You also need to make
your Azure web app available through your own domain
instead of the default azurewebsites.net domain. You can
do it by configuring the Custom Domain and SSL
settings.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch01_images.xhtml#pg040-2a

Use the following procedure for configuring SSL settings
for an existing web app. Remember that SSL settings are
available only for B1 or higher pricing tiers:

1. Open the Azure portal (https://portal.azure.com).

2. In the Search Resources text box, type the name of your Azure web app.

3. In the result list, click the name of your Azure web app.

4. On your Azure web app page, on the navigation list on the left side of
the page, click Custom Domain in the Settings section.

5. Click the Add Custom Domain button in the middle of the Custom
Domains page.

6. On the Add Custom Domain blade on the right side of the page, in the
Custom Domain text box, type a name for your domain.

7. Click the validate button and follow the instructions for validating your
domain.

8. Once you have validated your custom domain, click the Add Custom
Domain button in the Add Custom Domain blade.

9. Click TLS/SSL Settings in the Settings section on the left side of your
Azure Web App page.

10. In the TLS/SSL Settings page, in the TLS/SSL Bindings sections, click
Add TLS/SSL Binding. Note that you need the appropriate pfx
certificate for configuring this binding. You can import an existing
certificate or buy a new one.

11. In the TLS/SSL Binding blade, in the Custom Domain drop-down
menu, select the custom domain that you added in step 8.

12. In the Private Certificate Thumbprint drop-down menu, select a valid
certificate for your custom domain.

13. In the TLS/SSL Type drop-down menu, select SNI SSL.

14. At the bottom of the TLS/SSL Binding blade, click the Add Binding
button.

Note Azure Storage in APP Service
At the time of this writing, using Azure Storage in App Services is a feature that is in
preview and should not be used in production environments.

Need More Review? Configure APP Settings
You can review more details about how to configure the different settings in your Azure
web app by reviewing the article at https://docs.microsoft.com/en-us/azure/app-
service/configure-common.

 Exam Tip

https://portal.azure.com/
https://docs.microsoft.com/en-us/azure/app-service/configure-common

Remember that the settings that you configure
in the Application Settings section overwrite the
values that you configure in the <appSettings>
or <connectionStrings> in your Web.config or
appsettings.json files.

Implement autoscaling rules, including scheduled
autoscaling, and scaling by operational or system
metrics

One of the biggest challenges that you face when you
deploy your application in a production environment is
to ensure that you provide enough resources, so your
application has the expected performance. Determining
the number of resources you should allocate is the big
question when it comes to configuring the resources for
your app. If you allocate too many resources, your
application will perform well during usage peaks, but you
are potentially wasting resources. If you allocate fewer
resources, you are saving resources, but your app may
not perform well during usage peaks. Another issue with
the application performance is that it’s challenging to
anticipate when a heavy 42usage peak may happen. This
statement is especially true for applications that have
unpredictable usage patterns.

Fortunately, Azure provides a mechanism for addressing
this issue. You can dynamically assign more resources to
your application when you need them. Autoscaling is the
action of automatically adding or removing resources to
an Azure service and providing needed computing power
for your application in each situation. An application can
scale in two different ways:

Vertically You add more computing power by adding more
memory, CPU resources, and IOPS to the application. At the end
of the day, your application runs on a virtual machine. It doesn’t
matter if you use an IaaS virtual machine, Azure App Service, or
Azure Service Fabric, you are using virtual machines under the
hood. Vertically scaling an application means moving from a
smaller VM to a larger VM and adding more memory, CPU, and
IOPS. Vertically scaling requires stopping the system while the VM

is resizing. This type of scaling is also known as “scaling up and
down.”

Horizontally You can also scale your application by creating or
removing instances of your application. Each instance of your
application is executed in a virtual machine that is part of a virtual
machine scale set. The corresponding Azure service automatically
manages for you the virtual machines in the scale set. All these
instances of your application work together to provide the same
service. The advantage of scaling horizontally is that the
availability of your application is not affected because there is no
need for rebooting all the instances of your application that
provide the service. This type of scaling is also known as “scaling
out and in.”

When you work with autoscaling, we refer to horizontal
scaling because vertical scaling requires the service
interruption while the Azure Resource Manager is
changing the size of the virtual machine. For that reason,
vertical scaling is not suitable for autoscaling.

You configure autoscaling based on some criteria that
your application should meet for providing the right
performance level. You configure these criteria in Azure
by using autoscaling rules. A rule defines which metric
should use Azure Monitor for performing the
autoscaling. When that metric reaches the configured
condition, Azure automatically performs the action
configured for that rule. The typical action that you may
think the rule should do is adding or removing a VM to
the scale set, but it also can perform other actions like
sending an email or making an HTTP request to a
webhook. You can configure three different types of rules
when working the autoscaling rules:

Time-based The Azure Monitor executes the autoscaling rule
based on a schedule. For example, if your application requires
more resources during the first week of the month, you can add
more instances and reduce the number of resources for the rest of
the month.

Metric-based You configure the threshold for standard metrics,
such as the usage of the CPU, the length of the HTTP queue, or the
percentage of memory usage, as shown in Figure 1-8.

Custom-based You can create your metrics in your application,
expose them using Application Insight, and use them for
autoscaling rules.

Figure 1-8 Configuring a metric-based autoscale rule

You can only use the built-in autoscaling mechanism
with a limited group of Azure resource types:

Azure virtual machines You can apply autoscaling by using
virtual machine scale sets. All the VMs in a scale set are treated as
a group. By using autoscaling, you can add virtual machines to the
scale set or remove virtual machines from it.

Azure Service Fabric When you create an Azure Service Fabric
cluster, you define different node types. A different virtual
machine scale set supports each node type that you define in an
Azure Service Fabric cluster. You can apply the same type of
autoscaling rules that you use in a standard virtual machine scale
set.

Azure App Service This service has built-in autoscaling
capabilities that you can use for adding or removing instances to
the Azure App Service. The autoscale rules apply to all apps inside
the Azure App Service.

Azure Cloud Services This service has built-in autoscaling
capabilities that you can use for adding or removing resources to
the roles in the Azure Cloud Service.

When you work with the autoscale feature in one of the
supported Azure Service, you define a profile condition.
A profile condition defines the rule that you configure for
adding or removing resources. You can also define the
default, minimum, and maximum allowed instances for
this profile. When you define a minimum and maximum,
your service cannot decrease or grow beyond the limits
you define in the profile. You can also configure the
profile for scaling based on a schedule or 44based on the
values of built-in or custom metrics. You can use the
following procedure for adding a metric-based autoscale
rule to an Azure App Service. This rule adds an instance
to the Azure App Service plan when the average
percentage of CPU usage is over 80 percent more than 10
minutes:

1. Open the Azure portal (https://portal.azure.com).

2. In the search text box at the top of the Azure portal, type the name of
your Azure App Service.

3. Click the name of your Azure App Service in the results list.

4. On your Azure App Service blade, on the navigation menu on the left
side of the blade, click the Scale-Out (App Service Plan) option in the
Settings section.

5. On the Scale-Out (App Service Plan) blade, on the Configure tab, click
the Custom Autoscale button. Autoscale rules are available only for the
App Service plans that are Standard size or bigger.

6. On the Scale-Out (App Service Plan) blade, on the Configure tab, in the
Default Auto Created Scale Condition window shown in Figure 1-9, click
the Add A Rule link.

Figure 1-9 Configuring a metric-based autoscale rule

7. On the Scale rule panel, in the Criteria section, ensure that the CPU
Percentage value is selected in the Metric Name drop-down menu.

8. Ensure that the Greater Than value is selected from the Operator drop-
down menu.

https://portal.azure.com/

9. Type the value 80 in the Metric Threshold To Trigger Scale Action text
box.

10. In the Action section, ensure that the Instance count value is set to 1.

11. Click the Add button at the bottom of the panel.

12. On the Scale-Out (App Service Plan) blade, in the Default Profile
condition, set the Maximum Instance Limit to 3.

13. Click the Save button in the top-left corner of the blade.

Note Scale-Out/Scale-In
The previous procedure shows how to add an instance to the App Service plan (it is
scaling out the App Service plan) but doesn’t remove the additional instance once the
CPU percentage falls below the configured threshold. You should add a Scale-In rule
for removing the additional instances once they are not needed. You configure a Scale-
In rule in the same way you did it if for the Scale-Out rule. Just set the Operation drop-
down menu to the Decrease Count To value.

You can use different common autoscale patterns, based
on the settings that I have reviewed so far:

Scale based on CPU You scale your service (Azure App Service,
VM Scale Set, or Cloud Service) based on CPU. You need to
configure Scale-Out and Scale-In rules for adding and removing
instances to the service. In this pattern, you also set a minimum
and a maximum number of instances.

Scale differently on weekdays versus weekends You use
this pattern when you expect to have the primary usage of your
application occur on weekdays. You configure the default profile
condition with a fixed number of instances. Then you configure
another profile condition for reducing the number for instances
during weekends.

Scale differently during holidays You use the Scale based on
CPU pattern. Still, you add a profile condition for adding
additional instances during holidays or days that are important to
your business.

Scale based on custom metrics You use this pattern with a
web application comprised of three layers: front end, back end,
and API tiers. The front end of an API tier communicates with the
back-end tier. You define your custom metrics in the web
application and expose them to the Azure Monitor by using
Application Insights. You can then use these custom metrics for
adding more resources to any of the three layers.

 Exam Tip

Autoscaling allows you to assign resources to
your application in an efficient way. Autoscale

rules for adding more instances to your
application do not remove those instances when
the rule condition is not satisfied. As a best
practice, if you create a scale-out rule for adding
instances to a service, you should create the
opposite scale-in rule for removing the instance.
This ensures that the resources are assigned
efficiently to your application.

Need More Review? Autoscale Best Practices
You can find more information about best practices when configuring autoscale rules by
reviewing the article at https://docs.microsoft.com/en-us/azure/azure-
monitor/platform/autoscale-best-practices.

Need More Review? Application Design Considerations
Simply adding more resources to your application doesn’t guarantee that your
application is going to perform well. Your application needs to be aware of the new
resources to take advantage of them. You can review some application design
considerations reviewing the article at https://docs.microsoft.com/en-
us/azure/architecture/best-practices/auto-scaling#related-patterns-and-guidance.

SKILL 1.3: IMPLEMENT AZURE
FUNCTIONS

Based on Azure App Service, Azure Functions allow you
to run pieces of code that solve particular problems
inside the whole application. You use these functions in
the same way that you may use a class or a function
inside your code. That is, your function gets some input,
executes the piece of code, and provides an output.

The big difference between Azure Functions and other
app services models is that with Azure Functions (using
the Consumption pricing tier), you are charged per
second only when your code is running. If you use App
Service, you are charged hourly when the App Service
Plan is running—even if there is no code executing.
Because Azure Functions is based on App Service, you
can also decide to run your Azure Function in your App
Service Plan if you already have other app services
executing.

https://docs.microsoft.com/en-us/azure/azure-monitor/platform/autoscale-best-practices
https://docs.microsoft.com/en-us/azure/architecture/best-practices/auto-scaling#related-patterns-and-guidance

This skill covers how to

Implement input and output bindings for a function

Implement function triggers by using data operations,
timers, and webhooks

Implement Azure Durable Functions

Implement input and output bindings for a
function

When you are writing a function in your code, that
function may require data as input information for doing
the job that you are writing. The function can also
produce some output information as the result of the
operations performed inside the function. When you
work with Azure Functions, you may also need these
input and output flows of data.

Binding uses Azure Functions for connecting your
function with the external world without hard-coding the
connection to the external resources. An Azure Function
can have a mix of input and output bindings, or it can
have no binding at all. Bindings pass data to the function
as parameters.

Although triggers and bindings are closely related, you
should not confuse them. Triggers are the events that
cause the function to start its execution; bindings are like
the connection to the data needed for the function. You
can see the difference in this example:

One publisher service sends an event (to an Event Grid
that reads a new image that has been uploaded to Blob
Storage) to an Azure Storage account. Your function
needs to read this image, process it, and place some
information in a Cosmos DB document. When the image
has been processed, your function also sends a
notification to the user interface using SignalR.

In this example, you can find one trigger, one input
binding, and two output bindings:

Trigger The Event Grid should be configured as the trigger for
the Azure Function.

Input binding Your function needs to read the image that has
been uploaded to the Blob Storage. In this case, you need to use
Blob Storage as an input binding.

Output bindings Your function needs to write a Cosmos DB
document with the results of processing the image. You need to
use the Cosmos DB output binding. Your function also needs to
send a notification to the user interface using the SignalR output
binding.

Depending on the language that you use for
programming your Azure Function, the way you declare
a binding changes:

C# You declare bindings and triggers by decorating methods and
parameters.

Other Update the function.json configuration file.

When defining a binding for non-C# language functions,
you need to define your binding using the following
minimum required attributes:

type This string represents the binding type. For example, you
would use eventHub when using an output binding for Event Hub.

direction The only allowed values are in for input bindings and
out for output bindings. Some bindings also support the special
direction inout.

name The function uses this attribute for binding the data in the
function. For example, in JavaScript, the key in a key-value list is
an attribute.

Depending on the specific binding that you are
configuring, there could be some additional attributes
that should be defined.

Note Supported Bindings
For a complete list of supported bindings, please refer to the article at
https://docs.microsoft.com/en-us/azure/azure-functions/functions-triggers-
bindings#supported-bindings.

https://docs.microsoft.com/en-us/azure/azure-functions/functions-triggers-bindings#supported-bindings

Before you can use a binding in your code, you need to
register it. If you are using C# for your functions, you can
do this by installing the appropriate NuGet package. For
other languages, you need to install the package with the
extension code using the func command-line utility. The
following example installs the Service Bus extension in
your local environment for non-C# projects:

Click here to view code image

func extensions install –package
Microsoft.Azure.WebJobs.ServiceBus

If you are developing your Azure Function using the
Azure portal, you can add the bindings in the Integrate
section of your function. When you add a binding that is
not installed in your environment, you will see the
warning message shown in Figure 1-10. You can install
the extension by clicking the Install link.

Figure 1-10 Installing a binding extension

Need More Review? Manually Install Binding Extensions from the Azure
Portal
When you develop your Azure Function using the Azure portal, you can use the
standard editor or the advanced editor. When you use the advanced editor, you can
directly edit the function.json configuration file. If you add new bindings using the
advanced editor, you need to manually install any new binding extensions that you
added to the function.json. You can review the following article for manually installing
binding extensions from the Azure portal at https://docs.microsoft.com/en-
us/azure/azure-functions/install-update-binding-extensions-manual.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch01_images.xhtml#pg047a
https://docs.microsoft.com/en-us/azure/azure-functions/install-update-binding-extensions-manual

If you decide to program your Azure Function using C#,
you make the configuration of the bindings by using
decorators for function and parameters. The
function.json file is automatically constructed based on
the information that you provide in your code. Listing 1-7
shows how to configure input and output bindings using
parameter decorators.

Listing 1-7 Configuring input and output bindings

Click here to view code image

// C# ASP.NET Core
using System;
using System.IO;
using Microsoft.Azure.WebJobs;
using Microsoft.Extensions.Logging;
using Microsoft.Azure.WebJobs.Extensions.SignalRServi
using Microsoft.Azure.WebJobs.Extensions.EventGrid;
using Microsoft.Azure.EventGrid.Models;
using System.Threading.Tasks;

namespace Company.Functions
{
 public static class BlobTriggerCSharp
 {
 [FunctionName("BlobTriggerCSharp")]
 public static Task Run(
 [EventGridTrigger]EventGridEvent eventGr

[Blob("{data.url}", FileAccess.Read, Connection = "Im
imageBlob,
 [CosmosDB(
 databaseName: "GIS",
 collectionName: "Processed_images",
 ConnectionStringSetting = "CosmosDBCo

[SignalR(HubName = "notifications")]IAsyncCollector<S
 ILogger log)
 {
 document = new { Description = eventGridE
id = Guid.NewGuid() };

log.LogInformation($"C# Blob trigger function Process
Topic} \n Subject: {eventGridEvent.Subject} ");
 return signalRMessages.AddAsync(
 new SignalRMessage
 {
 Target = "newMessage",
 Arguments = new [] { eventGridEve
 });

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch01_images.xhtml#lis1-7a

Let’s review the portions of Listing 1-7 that are related to
the binding configuration. In this example, you
configured one input binding and two output bindings.
The parameter imageBlob is configured as an input
binding. You have decorated the parameter with the
attribute Blob, which takes the following parameters:

Path The value {data.url} configures the path of the blobs that are
passed to the function. In this case, you are using a binding
expression that resolves to the full path of the blob in the Blob
Storage.

Blob access mode In this example, you access the blob in read-
only mode.

Connection This sets the connection string to the storage
account where the blobs are stored. This parameter sets the app
setting name that contains the actual connection string.

You have also configured two output bindings, though
you have configured them differently. The first output
binding is configured using the keyword out in the
parameter definition. Just as you did with the input
parameter, you configured the output parameter
document by using a parameter attribute. In this case,
you used the CosmosDB attribute. You use the following
parameters for configuring this output binding:

databaseName Sets the database in which you save the
document that you create during the execution of the function.

collectionName Sets the collection in which you save the
generated document.

ConnectionStringSetting Sets the name of the app setting
variable that contains the actual connection string for the
database. You should not put the actual connection string here.

Setting a value for this output binding is as simple as
assigning a value to the parameter document. You can
also configure output bindings by using the return

 }
 }
}

statement of the function. In the example, you configure
the second output binding this way.

The function parameter signalRMessages is your second
output binding. As you can see in Listing 1-7, you didn’t
add the out keyword to this parameter because you can
return multiple output values. When you need to return
multiple output values, you need to use ICollector or
IAsyncCollector types with the output binding
parameter, as you did with signalRMessages. Inside the
function, you add needed values to the signalRMessages
collection and use this collection as the return value of
the function. You used the SignalR parameter attribute
for configuring this output binding. In this case, you only
used one parameter for configuring the output binding.

HubName This is the name of the SignalR hub where you send
your messages.

ConnectionStringSetting In this case, you didn’t use this
parameter, so it uses its default value
AzureSignalRConnectionString. As you saw in the other bindings,
this parameter sets the name of the app setting variable that
contains the actual connection string SignalR.

When you are configuring bindings or triggers, there are
situations when you need to map the trigger or binding
to a dynamically generated path or element. In these
situations, you can use binding expressions. You define a
binding expression by wrapping your expression in curly
braces. You can see an example of a binding expression
shown previously in Listing 1-7. The path that you
configure for the input binding contains the binding
expression {data.url}, which resolves to the full path of
the blob in the Blob Storage. In this case,
EventGridTrigger sends a JSON payload to the input
binding that contains the data.url attribute.

Need More Review? Binding Expression Patterns
You can learn about more binding expression patterns by reviewing this article about
Azure Functions binding expression patterns in Microsoft Docs at
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-expressions-
patterns.

https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-expressions-patterns

The way you configure the bindings for your code
depends on the language that you used for your Azure
Function. In the previous example, you review how to
configure input and output bindings using C# and
parameter decorations. If you use any of the other
supported languages in your Azure Function, the way
you configure input and output bindings changes.

The first step when configuring bindings in non-C#
languages is to modify the function.json configuration
file. Listing 1-8 shows the equivalent function.json for
the binding configuration made in Listing 1-7. Once you
have configured your bindings, you can write your code
to access the bindings that you configured. Listing 1-9
shows an example written in JavaScript for using
bindings in your code.

Listing 1-8 Configuring input and output bindings in function.json

Click here to view code image

{
 "disabled": false,
 "bindings": [
 {
 "name": "eventGridEvent",
 "type": "eventGridTrigger",
 "direction": "in"
 },
 {
 "name": "imageBlob",
 "type": "blob",
 "connection": "ImagesBlobStorage",
 "direction": "in",
 "path": "{data.url}"
 },
 {
 "name": "document",
 "type": "cosmosDB",
 "direction": "out",
 "databaseName": "GIS",
 "collectionName": "Processed_images",
 "connectionStringSetting": "CosmosDBConnection"
 "createIfNotExists": true
 },
 {
 "name": "signalRMessages",
 "type": "signalR",

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch01_images.xhtml#lis1-8a

Listing 1-9 Using bindings in JavaScript

Click here to view code image

Listings 1-8 and 1-9 represent the equivalent code in
JavaScript to the code in the C# code shown in Listing 1-
7. Most important is that name attributes in the binding
definitions shown in Listing 1-8 correspond to the
properties of the context object shown in Listing 1-9. For
example, you created a Cosmos DB output binding and
assigned the value document to the name attribute in the
binding definition in Listing 1-8. In your JavaScript code,
you access this output binding by using
context.bindings.document.

 Exam Tip

 "direction": "out",
 "hubName": "notifications"
 }
]
}

// NodeJS. Index.js
const uuid = require('uuid/v4');
module.exports = async function (context, eventGridEv
 context.log('JavaScript Event Grid trigger functi
 context.log("Subject: " + eventGridEvent.subject)
 context.log("Time: " + eventGridEvent.eventTime);
 context.log("Data: " + JSON.stringify(eventGridEv

 context.bindings.document = JSON.stringify({
 id: uuid(),
 Description: eventGridEvent.topic
 });

 context.bindings.signalRMessages = [{
 "target": "newMessage",
 "arguments": [eventGridEvent.subject]
 }];

 context.done();
};

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch01_images.xhtml#lis1-9a

Remember that you need to install the
extensions on your local environment before you
can use bindings or triggers. You can use the
func command-line command from the Azure
Function CLI tools.

Implement function triggers by using data
operations, timers, and webhooks

When you create an Azure Function, that function is
executed based on events that happen in the external
world. Some examples include

Executing a function periodically

Executing a function when some other process uploads a file to
Blob Storage or sends a message to a queue storage

Executing a function when an email arrives in Outlook

Triggers programmatically manage all these events.

You can configure function triggers in the same way that
you configure input or output bindings, but you need to
pay attention to some additional details when dealing
with triggers. You configure a trigger for listening to
specific events. When an event happens, the trigger
object can send data and information to the function.

You can configure three different types of triggers:

data operation The trigger is started based on new data that is
created, updated, or added to the system. Supported systems are
Cosmos DB, Event Grid, Event Hub, Blob Storage, Queue Storage,
and Service Bus.

timers You use this kind of trigger when you need to run your
function based on a schedule.

webhooks You use HTTP or webhooks triggers when you need to
run your function based on an HTTP Request.

Triggers send data to the function with information
about the event that caused the trigger to start. This
information depends on the type of trigger. Listing 1-10

shows how to configure a data operation trigger for
Cosmos DB.

Listing 1-10 Configuring a Cosmos DB trigger

Click here to view code image

Important Working with Leases Collection
At the time of this writing, Cosmos DB trigger does not support working with a
partitioned lease collection. Microsoft is removing the ability to create a nonpartitioned
collection using Azure portal. You can still create your nonpartitioned collections using
SDKs. Cosmos DB trigger requires a second collection to store leases over partitions.
Both collections—leases and the collection that you want to monitor—need to exist
before your code runs. To ensure that the lease collection is correctly created as a
nonpartitioned collection, don’t create the collection using the Azure portal, and set the
trigger parameter CreateLeaseCollectionIfNotExists to true.

Just as with bindings, you need to install the
corresponding NuGet package with the appropriate
extension for working with triggers. In this case, you
need to install the package

// C# ASP.NET Core
using System.Collections.Generic;
using Microsoft.Azure.Documents;
using Microsoft.Azure.WebJobs;
using Microsoft.Azure.WebJobs.Host;
using Microsoft.Extensions.Logging;
namespace Company.Function
{
 public static class CosmosDBTriggerCSharp
 {
 [FunctionName("CosmosDBTriggerCSharp")]
 public static void Run([CosmosDBTrigger(
 databaseName: "databaseName",
 collectionName: "collectionName",
 ConnectionStringSetting = "AzureWebJobsSt
 LeaseCollectionName = "leases",

CreateLeaseCollectionIfNotExists = true)]IReadOnlyLis
 {
 if (input != null && input.Count > 0)
 {
 log.LogInformation("Documents modifie
 log.LogInformation("First document Id
 log.LogInformation("Modified document
 }
 }
 }
}

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch01_images.xhtml#lis1-10a

Microsoft.Azure.WebJobs.Extensions.CosmosDB. You
used the CosmosDBTrigger parameter attribute for
configuring the trigger with the following parameters:

databaseName This is the name of the database that contains
the collection this trigger should monitor.

collectionName This is the name of the collection that this
trigger should monitor. This collection needs to exist before your
function runs.

ConnectionStringSetting This is the name of the app setting
variable that contains the connection string to the Cosmos DB
database. If you want to debug your function in your local
environment, you should configure this variable in the file
local.settings.json file and assign the value of the connection string
to your development CosmosDB database. This local.settings.json
file is used by Azure Functions Core Tools to store app settings,
connection strings, and settings locally and won’t be automatically
uploaded to Azure when you publish your Azure Function.

LeaseCollectionName This is the name of the collection used
for storing leases over partitions. By default, this collection is
stored in the same database as the collectionName. If you need to
store this collection in a separate database, use the parameter
leaseDatabaseName or leaseConnectionStringSetting if you need
to store the database in a separate Cosmos DB account.

CreateLeaseCollectionIfNotExists This creates the lease
collection set by the LeaseCollectionName parameter if it does not
exist in the database. Lease collection should be a nonpartitioned
collection and needs to exist before your function runs.

The Cosmos DB trigger monitors for new or updated
documents in the database that you configure in the
parameters of the trigger. Once the trigger detects a
change, it passes detected changes to the function using
an IReadOnlyList<Document>. Once you have the
information provided by the trigger in the input list, you
can process the information inside your function. If you
have enabled Application Insight integration, you should
be able to see the log messages from your function, as
shown in Figure 1-11.

Figure 1-11 View Azure Function logs in Application
Insight

Note Version 1.0 Versus Version 2.0 Versus Version 3.0
When you work with Azure Functions, you can choose between versions 1.0, 2.0, and
3.0. The main difference between the versions 1.0 and the other versions is that you
can only develop and host Azure Functions 1.0 on Azure portal or Windows computers.
Functions 2.0 and 3.0 can be developed and hosted on all platforms supported by
.NET Core. The Azure Function you use affects the extension packages that you need
to install when configuring triggers and bindings. Review the overview of Azure
Functions runtime versions at https://docs.microsoft.com/en-us/azure/azure-
functions/functions-versions.

When you work with timer and webhooks triggers, the
main difference between them and a data operations
trigger is that you do not need to install the extension
package that supports the trigger explicitly.

Timer triggers execute your function based on a
schedule. This schedule is configured using a CRON
expression that is interpreted by the NCronTab library. A
CRON expression is a string compound of six different
fields with this structure:

Click here to view code image

{second} {minute} {hour} {day} {month} {day-of-
week}

Each field can have numeric values that are meaningful
for the field:

second Represents the seconds in a minute. You can assign
values from 0 to 59.

https://docs.microsoft.com/en-us/azure/azure-functions/functions-versions
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch01_images.xhtml#pg055a

minute Represents the minutes in an hour. You can assign values
from 0 to 59.

hour Represents the hours in a day. You can assign values from 0
to 23.

day Represents the days in a month. You can assign values from 1
to 31.

month Represents the months in a year. You can assign values
from 1 to 12. You can also use names in English, such as January,
or you can use abbreviations of the name in English, such as Jan.
Names are case-insensitive.

day-of-week Represents the days of the week. You can assign
values from 0 to 6, where 0 is Sunday. You can also use names in
English, such as Monday, or you can use abbreviations of the
name in English, such as Mon. Names are case-insensitive.

All fields need to be present in a CRON expression. If you
don’t want to provide a value to a field, you can use the
asterisk character *. This means that the expression uses
all available values for that field. For example, the CRON
expression * * * * * * means that the trigger is executed
every second, in every minute, in every hour, in every
day, and every month of the year. You can also use some
operators with the allowed values in fields:

Range of values Use the dash operator (–) for representing all
the values available between two limits. For example, the
expression 0 10–12 * * * * means that the function is executed at
hh:10:00, hh:11:00, and hh:12:00 where hh means every hour.
That is, it is executed three times every hour.

Set of values Use the comma operator (,) for representing a set
of values. For example, the expression 0 0 11,12,13 * * * means that
the function will be executed three times a day, every day, once at
11:00:00, a second time at 12:00:00, and finally at 13:00:00.

Interval of values Use the forward slash operator (/) for
representing an interval of values. The function is executed when
the value of the field is divisible by the value that you put on the
right side of the operator. For example, the expression */5 * * * * *
will execute the function every five seconds.

Listings 1-11 and 1-12 show how to configure a timer
trigger and how to use the trigger with JavaScript code.

Listing 1-11 Configuring a timer trigger in function.json

Click here to view code image

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch01_images.xhtml#lis1-11a

{
 "disabled": false,
 "bindings": [
 {
 "name": "myTimer",
 "type": "timerTrigger",
 "direction": "in",
 "schedule": "0 */5 * * * *",
 "useMonitor": true,
 "runOnStartup": true
 }
]
}

Listing 1-12 Using a timer trigger with JavaScript

Click here to view code image

Just as you did when you configured bindings in the
previous section, when you configure a trigger for non-
C# languages, you need to add them to the function.json
configuration file. You configure your triggers in the
bindings section. Listing 1-11 shows the appropriate
properties for configuring a timer trigger:

name This is the name of the variable that you use on your
JavaScript code for accessing the information from the trigger.

type This is the type of trigger that you are configuring. In this
example, the value for the timer trigger is timerTrigger.

direction This is always included in a trigger.

//NodeJS. Index.js file
module.exports = async function (context, myTimer) {
 var timeStamp = new Date().toISOString();

 if(myTimer.isPastDue)
 {
 context.log('JavaScript is running late!');
 }
 context.log('JavaScript timer trigger Last execut
Last);
 context.log('JavaScript timer trigger Next execut
Next);
};

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch01_images.xhtml#lis1-12a

schedule This is the CRON expression used for configuring the
execution scheduling of your function. You can also use a
TimeSpan expression.

useMonitor This property monitors the schedule even if the
function app instance is restarted. The default value for this
property is true for every schedule with a recurrence greater than
one minute. Monitoring the schedule occurrences will ensure that
the schedule is maintained correctly.

runOnStartup This indicates that the function should be
invoked as soon as the runtime starts. The function will be
executed after the function app wakes up after going idle because
of inactivity or if the function app restarts because of changes in
the function. Setting this parameter to true is not recommended
on production environments because it can lead to unpredictable
execution times of your function.

Note Troubleshooting Functions on your Local Environment
While you are developing your Azure Functions, you need to troubleshoot your code in
your local environment. If you are using non-HTML triggers, you need to provide a valid
value for the AzureWebJobsStorage attribute in the local.settings.json file .

You use TimeSpan expressions to specify the time
interval between the invocations of the function. If the
function execution takes longer than the specified
interval, then the function is invoked immediately after
the previous invocation finishes. TimeSpan expressions
are strings with the format hh:mm:ss where hh
represents hours, mm represents minutes, and ss
represents seconds. Hours in a TimeSpan expression
need to be less than 24. The TimeSpan expression
24:00:00 means the function is going to be executed
every day. 02:00:00 means the function will be invoked
every two hours. You can use TimeSpan expressions only
on Azure Functions that are executed on App Service
Plans. That is, you cannot use TimeSpan expressions
when you are using the Consumption pricing tier.

You use HTTP triggers for running your Azure Function
when an external process makes an HTTP request. This
HTTP request can be a regular request using any of the
available HTTP methods or a webhook. A web callback
or webhook is an HTTP request made by third-party
systems, or external web applications, or as a result of an

event generated in the external system. For example, if
you are using GitHub as your code repository, GitHub
can send a webhook to your Azure Function each time a
new pull request is opened.

When you create an Azure Function using HTTP triggers,
the runtime automatically publishes an endpoint with
the following structure:

Click here to view code image

http://<your_function_app>.azurewebsites.net/api/<y
our_function_name>

This is the URL or endpoint that you need to use when
calling to your function using a regular HTTP request or
when you configure an external webhook for invoking
your function. You can customize the route of this
endpoint by using the appropriate configuration
properties. This means that you can also implement
serverless APIs using HTTP triggers. You can even
protect the access to your function’s endpoints by
requesting authorization for any request made to your
API using the App Service Authentication/Authorization.
Listing 1-13 shows how to configure an HTTP trigger
with a custom endpoint.

Listing 1-13 Configuring an HTTP trigger

Click here to view code image

// C# ASP.NET Core
using System.Security.Claims;
using System;
using System.IO;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc;
using Microsoft.Azure.WebJobs;
using Microsoft.Azure.WebJobs.Extensions.Http;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.Logging;
using Newtonsoft.Json;

namespace Company.Function
{

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch01_images.xhtml#pg058a
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch01_images.xhtml#lis1-13a

The example in Listing 1-13 shows the following points
when working with HTTP triggers:

How to work with authentication.

How to work with the authorization level.

How to customize the function endpoint, using route parameters.

How to customize the output binding.

 public static class HttpTriggerCSharp
 {
 [FunctionName("HttpTriggerCSharp")]
 public static async Task<IActionResult> Run(
 [HttpTrigger(AuthorizationLevel.Anonymous,
 {id:int?}")] HttpRequest req,
 int? id,
 ILogger log)
 {
 log.LogInformation("C# HTTP trigger funct
 //We access to the parameter in the addre
 log.LogInformation($"Requesting informati

 //If you enable Authentication / Authoriz
 //information
 //about the authenticated user is automat
 //HttpContext
 ClaimsPrincipal identities = req.HttpCont
 string username = identities.Identity?.Na

 log.LogInformation($"Request made by user

 string name = req.Query["name"];

 string requestBody = await new StreamRead
 dynamic data = JsonConvert.DeserializeObj
 name = name ?? data?.name;

 //We customize the output binding
 return name != null

 ? (ActionResult)new JsonResult(new {
username = username, device = id})

 : new BadRequestObjectResult("Please
in the request body");
 }
 }
}

HTTP triggers are automatically provided to you out-of-
the-box with the function runtime. There is no need to
install a specific NuGet package for working with this
extension. You use the HTTPTrigger parameter attribute
for configuring the HTTP trigger. This trigger accepts the
following parameters:

AuthLevel This parameter configures the authorization key that
you should use for accessing the function. Allowed values are

anonymous No key is required.

function This is the default value. You need to provide a
function-specific key.

admin You need to provide the master key.

Methods You can configure the HTTP methods that your
function accepts. By default, the function runtime accepts all
HTTP methods. Listing 1-13 reduces these accepted HTTP
methods to GET and POST. Don’t use this parameter if you set the
WebHookType parameter.

Route You can customize the route of the endpoint used for the
function to listen to a new request. The default route is
https://<your_function_app>.azurewebsites.net/api/<your_fun
ction_name>.

WebHookType This parameter is available only for version 1.x
runtime functions. You should not use the Methods and
WebHookType parameters together. This parameter sets the
webhook type for a specific provider. Allowed values are

genericJson This parameter is used for nonspecific
providers.

github This parameter is used for interacting with
GitHub webhooks.

slack This parameter is used for interacting with Slack
webhooks.

When you declare the variable type that your function
uses as the input from the trigger, you can use
HttpRequest or a custom type. If you use a custom type,
the runtime tries to parse the request body as a JSON
object for getting needed information for setting your
custom type properties. If you decide to use HttpRequest
for the type of the trigger input parameter, you get full
access to the request object.

Every Azure Function App that you deploy automatically
exposes a group of admin endpoints that you can use for
accessing programmatically some aspects of your app,
such as the status of the host. These endpoints look like

Click here to view code image

https://<your_function_app_name>.azurewebsites.net/admin/host/status

By default, these endpoints are protected by an access
code or authentication key that you can manage from
your Function App in the Azure portal, as shown in
Figure 1-12.

Figure 1-12 Managing host keys for a Function App

When you use the HTTP trigger, any endpoint that you
publish is also protected by the same mechanism,
although the keys that you use for protecting those
endpoints are different. You can configure two types of
authorization keys:

host These keys are shared by all functions deployed in the
Function App. This type of key allows access to any function in the
host.

function These keys only protect the function where they are
defined.

When you define a new key, you assign a name to the
key. If you have two keys of a different type—host and
function—with the same name, the function key takes
precedence. There are also two default keys—one per
type of key—that you can also use for accessing your

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch01_images.xhtml#pg060a

endpoints. These default keys take precedence over any
other key that you created. If you need access to the
admin endpoints that I mentioned earlier, you need to
use a particular host key called _master. You also need to
use this administrative key when you set the admin value
to the AuthLevel trigger configuration parameter. You
can provide the appropriate key when you make a
request to your API by using the code parameter or using
the x-function-key HTTP header.

Protecting your endpoints using the authorization keys is
not a recommended practice for production
environments. You should only use authorization keys on
testing or development environments for controlling the
access to your API. For a production environment, you
should use one of the following approaches:

Enable Function App Authorization/Authentication This
integrates your API with Azure Active Directory or other third-
party identity providers to authenticate clients.

Use Azure API Management (APIM) This secures the
incoming request to your API, such as filtering by IP address or
using authentication based on certificates.

Deploy your function in an App Service Environment
(ASE) ASEs provides dedicated hosting environments that allow
you to configure a single front-end gateway that can authenticate
all incoming requests.

If you decide to use any of the previous security methods,
you need to ensure that you configure the AuthLevel as
anonymous. You can see this configuration in Listing 1-
13 in this line:

Click here to view code image

HttpTrigger(AuthorizationLevel.Anonymous…

When you enable the App Service
Authentication/Authorization, you can access the
information about the authentication users by reading
special HTTP headers set by the App Service. These
special headers cannot be set by external resources; they

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch01_images.xhtml#pg061-1a

can be set only by the App Service. For ASP.NET
projects, the framework automatically fills a
ClaimsPrincipal object with the authentication
information. You can use ClaimsPrincipal as an
additional parameter of your function signature or from
the code—using the request context—as shown
previously in Listing 1-13.

Click here to view code image

ClaimsPrincipal identities =
req.HttpContext.User;
string username = identities.Identity?.Name;

As described in this section, Azure Functions runtime
exposes your function by default using the following URL
schema:

Click here to view code image

https://<your_function_app_name>.azurewebsites.net/api/<your_function_name>

You can customize the endpoint by using the route
HTTPTrigger parameter. In Listing 1-13, you set the
route parameter to devices/{id:int?}. This means that
your endpoint looks like this:

Click here to view code image

https://<your_function_app_name>.azurewebsites.net/api/devices/{id:int?}

When you customize the route for your function, you can
also add parameters to the route, which are accessible to
your code by adding them as parameters of your
function’s signature. You can use any Web API Route
Constraint (see https://www.asp.net/web-
api/overview/web-api-routing-and-actions/attribute-
routing-in-web-api-2#constraints) that you may use
when defining a route using Web API 2.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch01_images.xhtml#pg061-2a
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch01_images.xhtml#pg062-1a
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch01_images.xhtml#pg062-2a
https://www.asp.net/web-api/overview/web-api-routing-and-actions/attribute-routing-in-web-api-2#constraints

By default, when you make a request to a function that
uses an HTTP trigger, the response is an empty body
with these status codes:

Click here to view code image

HTTP 200 OK in case of Function 1.x runtime
HTTP 204 No Content in case of Function 2.x
runtime

If you need to customize the response of your function,
you need to configure an output binding. You can use
any of the two types of output bindings, using the return
statement or a function parameter. Listing 1-13 shows
how to configure the output binding for returning a
JSON object with some information.

It is important to remember the limits associated with
the function when you plan to deploy your function in a
production environment. These limits are

Maximum request length The HTTP request should not be
larger than 100 MB.

Maximum URL length Your custom URL is limited to 4096
bytes.

Execution timeout Your function should return a value in less
than 230 seconds. Your function can take more time to execute,
but if it doesn’t return anything before that time, the gateway will
time out with an HTTP 502 error. If your function needs to take
more time to execute, you should use an async pattern and return
a ping endpoint to allow the caller to ask for the status of the
execution of your function.

Need More Review? Host Properties
You can also make some adjustments to the host where your function is running by
using the host.json file. Visit the following article for reviewing all the properties
available in the host.json file at https://docs.microsoft.com/en-us/azure/azure-
functions/functions-bindings-http-webhook#trigger---hostjson-properties.

You can also review which are the limits associated with the different framework
versions and hosting plans by reviewing the article at https://docs.microsoft.com/en-
us/azure/azure-functions/functions-scale.

 Exam Tip

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch01_images.xhtml#pg062-3a
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-http-webhook#trigger---hostjson-properties
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale

In earlier versions of Azure Functions, the
authentication information was available only to
ASP.NET projects using the ClaimsPrincipal
class. Now you can access that information by
reading the special HTTP Headers set by the
App Service. For a complete list of
authentication headers refer to the article
https://docs.microsoft.com/en-us/azure/app-
service/app-service-authentication-how-
to#access-user-claims.

Implement Azure Durable Functions

One crucial characteristic of Azure functions is that they
are stateless. This characteristic means that function
runtime does not maintain the state of the objects that
you create during the execution of the function if the host
process or the VM where the function is running is
recycled or rebooted.

Azure Durable Functions are an extension of the Azure
Functions that provide stateful workflow capabilities in a
serverless environment. These stateful workflow
capabilities allow you to

Chain function calls together This chaining means that a
function can call other functions, which maintains the status
between calls. These calls can be synchronous or asynchronous.

Define workflow by code You don’t need to create JSON
workflow definitions or use external tools.

Ensure that the status of the workflow is always
consistent When a function or activity on a workflow needs to
wait for other functions or activities, the workflow engine
automatically creates checkpoints for saving the status of the
activity.

The main advantage of using Azure Durable Functions is
that it eases the implementation of complex stateful
coordination requirements in serverless scenarios.
Although Durable Azure Functions is an extension of
Azure Functions, at the time of this writing, it doesn’t

https://docs.microsoft.com/en-us/azure/app-service/app-service-authentication-how-to#access-user-claims

support all languages supported by Azure Functions. The
following languages are supported:

C# Both precompiled class libraries and C# script are supported.

F# Precompiled class libraries and F# script are supported. F#
script is available only for Azure Functions runtime 1.x.

JavaScript Supported only for Azure Functions runtime version
2.x runtime. Version 1.7.0 or later or Azure Durable Functions is
required.

Durable Functions are billed using the same rules that
apply to Azure Functions. That is, you are charged only
for the time that your functions are running.

Working with Durable Functions means that you need to
deal with different kinds of functions. Each type of
function plays a different role in the execution of the
workflow. These roles are

Activity These are the functions that do the real work. An activity
is a job that you need your workflow to do. For example, you may
need your code to send a document to a content reviewer before
other activity can publish the document, or you need to create a
shipment order to send products to a client.

Orchestrator Any workflow executes activity functions in a
particular order. Orchestrator functions define the actions that a
workflow executes. These actions can be activity functions, timers,
or waiting for external events or suborchestrations. Each instance
of an orchestrator function has an instance identifier. You can
generate this identifier manually or leave the Durable Function
framework to generate it dynamically.

Client This is the entry point of a workflow. Triggers such as
HTTP, queue, or event triggers create instances of a client
function. Client functions create instances of orchestrator
functions by sending an orchestrator trigger.

In the same way that Azure Functions uses triggers and
bindings for sending and receiving information from
functions, you need to use triggers and bindings for
setting the communication between the different types of
durable functions. Durable functions add two new
triggers to control the execution of orchestration and
activity functions:

Orchestration trigger These allow you to work with
orchestration functions by creating new instances of the function
or resuming instances that are waiting for a task. The most
important characteristic of these triggers is that they are single-
threaded. When you use orchestration triggers, you need to ensure
that your code does not perform async calls—other than waiting
for durable function tasks—or I/O operations. This ensures that
the orchestration function is focused on calling activity functions
in the correct order and waiting for the correct events or functions.

Activity trigger This is the type of trigger that you need to use
when writing your activity functions. These triggers allow
communications between orchestration functions and activity
functions. They are multithreaded and don’t have any restrictions
related to threading or I/O operations.

The following example shows how the different types of
functions and triggers work together for processing and
saving a hypothetical order generated from an external
application and saved to a Cosmos DB database.
Although the example is quite simple, it shows how the
different functions interact. Figure 1-13 shows a diagram
of the workflow implemented on the functions shown in
Listings 1-14 to 1-21. For running this example, you need
to meet the following requirements:

An Azure subscription.

An Azure Storage Account. The orchestration function needs an
Azure Storage Account for saving the status of each durable
function instance during the execution of the workflow.

An Azure Cosmos DB database.

Install the following dependencies using this command:

Click here to view code image

func extensions install -p <package_name>
-v <package_version>

Cosmos DB:

Package name:
Microsoft.Azure.WebJobs.Extensions.CosmosDB

Version: 3.0.3

Durable Functions extension:

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch01_images.xhtml#pg064a

Package name:
Microsoft.Azure.WebJobs.Extensions.DurableTask

Version: 1.8.0

Figure 1-13 Durable function workflow

You can run this example using your favorite Integrated
Development Environment (IDE). Visual Studio and
Visual Studio Code offer several tools that make working
with Azure projects more comfortable. Use the following
steps for configuring your Visual Studio Code and
creating the durable functions:

1. Open your Visual Studio Code.

2. Click the Extensions icon on the left side of the window.

3. On the Extensions panel, on the Search Extensions In Marketplace text
box, type Azure Functions.

4. In the result list, on the Azure Functions extension, click the Install
button. Depending on your Visual Studio Code version, you may need to
restart Visual Studio Code.

5. Click the Azure icon on the left side of the Visual Studio Code window.

6. In the Functions section, click Sign In To Azure For Log Into Azure.

7. In the Functions section, click the lightning bolt icon, which creates a
new Azure Function.

8. In the Create New Project dialog box, select JavaScript.

9. In the Select A Template For Your Project’s First Function dialog box,
select HTTP Trigger.

10. For the Provide A Function Name option, type
HTTPTriggerDurable. This creates the first function that you need
for this example.

11. Select Anonymous for the Authorization Level.

12. Select Open In Current Window to open the project that you just
created.

Repeat steps 5 to 12 for all the Durable Functions that
you need for this example. It is important to save all the
functions you need in the same folder.

Listings 1-14 and 1-15 show the JavaScript code and the
JSON configuration file that you need to create the client
function that calls the orchestration function.

Listing 1-14 Azure Durable Functions client function code

Click here to view code image

// NodeJS. HTTPTriggerDurable/index.js
const df = require("durable-functions");

module.exports = async function (context, req) {
 context.log('JavaScript Durable Functions example
 const client = df.getClient(context);
 const instanceId = await client.startNew(req.para
req.body);

 context.log('Started orchestration with ID = '${i

 return client.createCheckStatusResponse(context.b
};

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch01_images.xhtml#lis1-14a

Listing 1-15 Durable Functions—Client function JSON configuration file

Click here to view code image

{
 "disabled": false,
 "bindings": [
 {
 "authLevel": "anonymous",
 "type": "httpTrigger",
 "direction": "in",
 "name": "req",
 "route": "orchestrators/{functionName}",
 "methods": [
 "get",
 "post"
]
 },
 {
 "type": "http",
 "direction": "out",
 "name": "$return"
 },
 {
 "name": "context",
 "type": "orchestrationClient",
 "direction": "in"
 }
]
}

Listings 1-16 and 1-17 show the JavaScript code and the
JSON configuration file that you need to create the
Orchestration function that invokes, in the correct order,
all the other activity functions. This function also returns
to the client’s function the results of the execution of the
different activity functions.

Listing 1-16 Azure Durable Functions Orchestrator function code

Click here to view code image

// NodeJS. OrchestratorFunction/index.js
const df = require("durable-functions");

module.exports = df.orchestrator(function*(context) {
 context.log("Starting workflow: chain example");

 const order = yield context.df.callActivity("GetO
 const savedOrder = yield context.df.callActivity(

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch01_images.xhtml#lis1-15a
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch01_images.xhtml#lis1-16a

Listing 1-17 Durable Functions—Orchestrator function JSON
configuration file

Click here to view code image

{
 "disabled": false,
 "bindings": [
 {
 "type": "orchestrationTrigger",
 "direction": "in",
 "name": "context"
 }
]
}

Listings 1-18 and 1-19 show the JavaScript code and the
JSON configuration file that you need to create the
activity function Get Order. In this example, this
function is in charge of constructing the information that
is used in the Save Order function. In a more complex
scenario, this function could get information from the
user’s shopping cart from an e-commerce system or any
other potential source.

Listing 1-18 Azure Durable Functions activity function code

Click here to view code image

// NodeJS. GetOrder/index.js
module.exports = async function (context) {
 //Create a mock order for testing
 var order = {
 "id" : Math.floor(Math.random() * 1000),
 "name" : "Customer",
 "date" : new Date().toJSON()
 }
 context.log(order);
 return order;
};

 return savedOrder;
});

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch01_images.xhtml#lis1-17a
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch01_images.xhtml#lis1-18a

Listing 1-19 Azure Durable Functions activity function JSON
configuration file

Click here to view code image

{
 "disabled": false,
 "bindings": [
 {
 "type": "activityTrigger",
 "direction": "in",
 "name": "name"
 }
]
}

Listings 1-20 and 1-21 show the JavaScript code and the
JSON configuration file that you need to create the
activity function that saves the order in a Cosmos DB
database. In a much more complex scenario, you could
use this function to insert the order into your ERP
system or send it to another activity function that could
do further analysis or processing.

Listing 1-20 Azure Durable Functions activity function code

Click here to view code image

Listing 1-21 Azure Durable Functions activity function JSON configuration
file

Click here to view code image

// NodeJS. SaveOrder/index.js
module.exports = async function (context) {

 //Saves the order object received from other acti
 context.bindings.orderDocument = JSON.stringify({
 "id": '${context.bindings.order.id}',
 "customerName": context.bindings.order.name,
 "orderDate": context.bindings.order.date,
 "cosmosDate": new Date().toJSON()
 });
 context.done();
};

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch01_images.xhtml#lis1-19a
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch01_images.xhtml#lis1-20a
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch01_images.xhtml#lis1-21a

The entry point in any workflow implemented using
Durable Functions is always a client function. This
function uses the orchestration client for calling the
orchestrator function. Listing 1-15 shows how to
configure the output binding.

Click here to view code image

{
 "name": "context",
 "type": "orchestrationClient",
 "direction": "in"
}

When you are using JavaScript for programming your
client function, the orchestrator client output binding is
not directly exposed using the value of the name
attribute set in the function.json configuration file. In
this case, you need to extract the actual client from the
context variable using the getClient() function declared
in the durable-functions package, as shown in Listing 1-
14.

Click here to view code image

{
 "disabled": false,
 "bindings": [
 {
 "type": "activityTrigger",
 "direction": "in",
 "name": "order"
 }
 ,
 {
 "name": "orderDocument",
 "type": "cosmosDB",
 "databaseName": "ERP_Database",
 "collectionName": "Orders",
 "createIfNotExists": true,
 "connectionStringSetting": "CosmosDBStorage",
 "direction": "out"
 }
]
}

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch01_images.xhtml#pg069a
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch01_images.xhtml#pg069-2a

const client = df.getClient(context);

Once you have the correct reference to the orchestrator
client output binding, you can use the method startNew()
for creating a new instance of the orchestrator function.
The parameters for this method are

Name of the orchestrator function In the example, you get
this name from the HTTP request, using the URL parameter
functionName, as previously shown in Listings 1-14 and 1-15.

InstanceId Sets the Id assigned to the new instance of the
orchestration function. If you don’t provide a value to this
parameter, then the method creates a random Id. In general, you
should use the autogenerated random Id.

Input This is where you place any data that your orchestration
function may need. You need to use JSON-serializable data for this
parameter.

Once you have created the instance of the orchestration
function and saved the Id associated with the instance,
the client function returns a data structure with several
useful HTTP endpoints. You can use these endpoints to
review the status of the execution of the workflow, or
terminate the workflow, or send external events to the
workflow during the execution. Following is an example
of the workflow management endpoints for the execution
of the example in a local computer environment:

Note Console Output
For the shake of the space, some lines have been trimmed. Your output should show
longer lines, including the instance id and other codes.

Click here to view code image

{

 "id": "789e7eb945a04ab78e74e9216870af28",

 "statusQueryGetUri":

"http://localhost:7071/runtime/webhooks/durabletask/

instances…",

 "sendEventPostUri":

"http://localhost:7071/runtime/webhooks/durabletask/

instances…",

 "terminatePostUri":

"http://localhost:7071/runtime/webhooks/durabletask/

instances…",

 "rewindPostUri":

"http://localhost:7071/runtime/webhooks/durabletask/

instances…",

"purgeHistoryDeleteUri":

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch01_images.xhtml#pg070-1a

"http://localhost:7071/runtime/webhooks/durabletask/

instances."

}

This example uses an Azure Function based on an HTTP
trigger, but your client function is not limited to use this
trigger. You can use any of the triggers available in the
Azure Function framework.

Once you have created the instance of the orchestrator
function, this function calls the activity functions by the
order defined in the code, as previously shown in Listing
1-16.

Click here to view code image

 const order = yield
context.df.callActivity("GetOrder");
 const savedOrder = yield
context.df.callActivity("SaveOrder", order);

The orchestrator function uses an orchestration trigger
for getting the information that the client function sends
when it creates the instance. The orchestration trigger
creates the instances of the different activity functions by
using the callActivity() method of the durable-functions
package. This method takes two parameters:

Name of the activity function

Input You put here any JSON-serializable data that you want to
send to the activity function.

In the example, you execute the activity function
GetOrder, previously shown in Listing 1-18, for getting
the order object that you use as the input parameter for
the next activity function SaveOrder, previously shown in
Listing 1-20, for saving the information in the Cosmos
DB database configured in Listing 1-21.

You can test this example on your local computer by
running the functions that reviewed in this section, in the

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch01_images.xhtml#pg070-2a

same way that you test any other Azure Function. Once
you have your function running, you can test it by using
curl or postman. You should make a GET or POST HTTP
request to this URL:
http://localhost:7071/api/orchestrators/OrchestratorF
unction.

Notice that the parameter functionName of the URL
matches with the name of the orchestrator function.
Your client function allows you to call different
orchestration functions just by providing the correct
orchestration function name.

You can use different patterns when you are
programming the orchestration function. These patterns
show how the orchestration and activity functions
interact with each other:

Chaining The activity functions are executed in a specific order,
where the output of one activity function is the input of the next
one. This is the pattern that you used in your example.

Fan out/fan in Your orchestration function executes multiple
activity functions in parallel. The result of these parallel activity
functions is processed and aggregated by a final aggregation
activity function.

Async HTTP APIs This pattern coordinates the state of long-
running operations with external clients.

Monitor This pattern allows you to create recurrent tasks using
flexible time intervals.

Human Interaction Use this pattern when you need to run
activity functions based on events that a person can trigger. An
example of this type of pattern is the document approval
workflow, where publishing a document depends on the approval
of a person.

Need More Review? Durable Function Patterns
You can get more information about Durable Function patterns by reviewing the article
Patterns and Concepts in Microsoft Docs at https://docs.microsoft.com/en-
us/azure/azure-functions/durable/durable-functions-concepts.

 Exam Tip

https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-concepts

When working with Azure Durable Functions,
remember that you can pass information
between the different functions in the workflow
by using the binding mechanism.

CHAPTER SUMMARY

Azure provides computing services for deploying your own
virtualized infrastructure directly in the cloud. You can also deploy
hybrid architectures to connect your on-premises infrastructure
with your IaaS resources.

Azure Resource Manager is the service in Azure that manages the
different resources that you can deploy in the cloud. You can
define the resources and their dependencies by using a JSON-
based file called an ARM template.

A container image is a package of software in which you store your
code and any library or dependencies for running your application
in a highly portable environment.

When you create a new instance of a container image, each of
these instances is named a “container.”

You can store your container images in a centralized store called a
registry.

Azure Container Registry is a managed registry, which is based on
the open-source specification of Docker Registry 2.0.

You can run your containers in several Azure services, such as
Azure Managed Kubernetes Service, Azure Container Instance,
Azure Batch, Azure App Service, or Azure Container Service.

Azure provides you with needed services for deploying serverless
solutions, allowing you to center on the code and forget about the
infrastructure.

Azure App Services is the base of the serverless offering. On top of
App Services, you can deploy web apps, mobile back-end apps,
REST APIs, or Azure Functions and Azure Durable Functions.

When you work with App Services, you are charged only by the
time that your code is running.

App Services runs on top of App Services Plans.

An App Service Plan provides the resources and virtual machines
needed for running your App Services code.

You can run more than one App Service on top of a single App
Service Plan.

When troubleshooting your App Service application, you can use
several types for diagnostics logging: webserver logging and

diagnostics, detailed error, failed requests, application diagnostics,
and deployment diagnostics.

Diagnostics logging is stored locally on the VM, where the instance
of your application is running.

Horizontal scaling or in-out scaling is the process of adding or
removing instances of an application.

Vertical scaling or up-down scaling is the process of adding or
removing resources to the same virtual machine that hosts your
application.

Scale In/Out doesn’t have an effect on the availability of the
application.

Vertical scaling affects the availability of the application because
the application needs to be deployed in a virtual machine with the
new resources assignment.

You can add and remove resources to your applications by using
autoscale rules.

You can apply autoscale only to some Azure Resource types.

Autoscale depends on Azure virtual machine scale sets.

Your application needs to be aware of the changes in the resources
assignment.

Azure Functions is the evolution of WebJobs.

Azure Functions use triggers and bindings for creating instances of
Azure functions and sending or receiving data to or from external
services, like Queue storage or Event Hub.

There are three versions of Azure Functions. Version 1.0 only
supports .NET Framework and Windows environments. Version
2.0 and later support .NET Core and Windows and Linux
environments.

When you work with triggers and bindings, you need to install the
appropriate NuGet package for function extension that contains
that trigger or binding.

Azure Function runtime already includes extensions for Timers
and HTTP triggers. You don’t need to install specific packages for
using these trigger bindings.

Triggers that create function instances can be based on data
operations, timers, or webhooks.

Azure Durable Functions is the evolution of Azure Functions that
allow you to create workflows where the state of the instances is
preserved in case of VM restart or function host process respawn.

Orchestration functions define the activity and the order of
execution of the functions that do the job.

Activity functions contain the code that makes the action that you
need for a step in the workflow, like sending an email, saving a
document, or inserting information in a database.

Client functions create the instance of the orchestration function
using an orchestration client.

Azure Function Apps provides the resources needed for running
Azure Functions and Durable Functions.

THOUGHT EXPERIMENT

In this Thought Experiment, you can demonstrate your
skills and knowledge about the topics covered in this
chapter. You can find the answers to this Thought
Experiment in the next section.

You are developing an application for making the
integration between several systems. One of the systems
is a legacy application that generates some reports in a
specific file format. Those file reports are uploaded to an
Azure Storage account. Your application reads the
information from these file reports and inserts the
information in different destination systems. Answer the
following questions related to the described scenario:

1. Before your application can insert information on
the destination, the information needs to be
approved. This approval workflow needs to start
when a new report file is added to the Azure Storage
Account. Which Azure service best fits your needs?

2. Your application is suffering from performance
issues. The performance issues only happen during
some days in the month. You need to ensure that
your application doesn’t suffer performance issues
during the usage peaks. How can you achieve this?

THOUGHT EXPERIMENT ANSWERS

This section contains the solutions to the Thought
Experiment.

1. As the information needs to be approved before it
can be inserted in the target systems, you should use

Azure Durable Functions. By implementing a
Human Interaction pattern, you can wait for the
information to be validated before inserting it into
the correct destination system. You can also use
Azure Blob Storage triggers for starting the
workflow. Because you need to wait for human
confirmation, you should use Azure Durable
Function instead of Azure Functions.

2. You can deploy Azure Durable Functions to Azure
App Service Plans. Starting with the Standard
pricing tier, you can configure Autoscale rules for
your Azure App Service Plan. Using autoscale rules,
you can add or remove resources to the App Service
Plan based on your needs. In this scenario, you can
add more resources based on CPU consumption or
during specific days. Because no specific pattern has
been described in the scenario, you should first
study the usage pattern before configure the
appropriate autoscale rules.

Chapter 2. Develop for Azure
storage

All applications work with information or data.
Applications create, transform, model, or operate with
that information. Regardless of the type or volume of the
data that your application uses, sooner or later, you need
to save it persistently so that it can be used later.

Storing data is not a simple task, and designing storage
systems for that purpose is even more complicated.
Perhaps your application needs to deal with terabytes of
information, or you may work with an application that
needs to be accessed from different countries, and you
need to minimize the time required to access it. Also,
cost efficiency is a requirement in any project. In general,
many requirements make designing and maintaining
storage systems difficult.

Microsoft Azure offers different storage solutions in the
cloud to satisfy your application storage requirements.
Azure offers solutions for making your storage cost-
effective and minimizing latency.

Skills covered in this chapter:

Skill 2.1: Develop solutions that use Cosmos DB storage

Skill 2.2: Develop solutions that use Blob Storage

SKILL 2.1: DEVELOP SOLUTIONS
THAT USE COSMOS DB STORAGE

Cosmos DB is a premium storage service that Azure
provides for satisfying your need for a globally
distributed, low-latency, highly responsive, and always-
online database service. Cosmos DB has been designed

with scalability and throughput in mind. One of the most
significant differences between Cosmos DB and other
storage services offered by Azure is how easily you can
scale your Cosmos DB solution across the globe by
merely clicking a button and adding a new region to your
database.

Another essential feature that you should consider when
evaluating this type of storage service is how you can
access this service from your code and how hard it would
be to migrate your existing code to a Cosmos DB–based
storage solution. The good news is that Cosmos DB offers
different APIs for accessing the service. The best API for
you depends on the type of data that you want to store in
your Cosmos DB database. You store your data using
Key-Value, Column-Family, Documents, or Graph
approaches. Each of the different APIs that Cosmos DB
offers allows you to store your data with different
schemas. Currently, you can access Cosmos DB using
SQL, Cassandra, Table, Gremlin, and MongoDB APIs.

This skill covers how to

Select the appropriate API for your solution

Implement partitioning schemes

Interact with data using the appropriate SDK

Set the appropriate consistency level for operations

Create Cosmos DB containers

Implement server-side programming including stored
procedures, triggers, and change feed notifications

Select the appropriate API for your solution

When you are planning how to store the information that
your application needs to work, you need to consider the
structure that you need to use for storing that
information. You may find that some parts of your
application need to store information using a Key-Value
structure. In contrast, others may need a more flexible,

schemaless structure in which you need to save the
information into documents. Maybe one fundamental
characteristic of your application is that you need to
store the relationship between entities, and you need to
use a graph structure for storing your data.

Cosmos DB offers a variety of APIs for storing and
accessing your data, depending on the requirements that
your application has:

SQL This is the core and default API for accessing your data in
your Cosmos DB account. This core API allows you to query JSON
objects using SQL syntax, which means you don’t need to learn
another query language. Under the hood, the SQL API uses the
JavaScript programming model for expression evaluation,
function invocations, and typing system. You use this API when
you need to use a data structure based on documents.

Table You can think of the Table API as the evolution of the Azure
Table Storage service. This API benefits from the high-
performance, low-latency, and high-scalability features of Cosmos
DB. You can migrate from your current Azure Table Storage
service with no code modification in your application. Another
critical difference between Table API for Cosmos DB and Azure
Table Storage is that you can define your own indexes in your
tables. In the same way that you can do with the Table Storage
service, Table API allows you to store information in your Cosmos
DB account using a data structure based on documents.

Cassandra Cosmos DB implements the wire protocol for the
Apache Cassandra database into the options for storing and
accessing data in the Cosmos DB database. This allows you to
forget about operations and performance-management tasks
related to managing Cassandra databases. In most situations, you
can migrate your application from your current Cassandra
database to Cosmos DB using the Cassandra API by merely
changing the connection string. Azure Cosmos DB Cassandra API
is compatible with the CQLv4 wire protocol. Cassandra is a
column-based database that stores information using a key-value
approach.

MongoDB You can access your Cosmos DB account by using the
MongoDB API. This NoSQL database allows you to store the
information for your application in a document-based structure.
Cosmos DB implements the wire protocol compatible with
MongoDB 3.2. This means that any MongoDB 3.2 client driver
that implements and understands this protocol definition can
connect seamlessly with your Cosmos DB database using the
MongoDB API.

Gremlin Based on the Apache TinkerPop graph transversal
language or Gremlin, this API allows you to store information in

Cosmos DB using a graph structure. This means that instead of
storing only entities, you store

Vertices You can think of a vertex as an entity in other
information structures. In a typical graph structure, a
vertex could be a person, a device, or an event.

Edges These are the relationships between vertices. A
person can know another person, a person might own a
type of device, or a person may attend an event.

Properties These are each of the attributes that you can
assign to a vertex or an edge.

Beware that you cannot mix these APIs in a single
Cosmos DB account. You need to define the API that you
want to use for accessing your Cosmos DB account when
you are creating the account. Once you have created the
account, you won’t be able to change the API for
accessing it.

Azure offers SDKs for working with the different APIs
that you can use for connecting to Cosmos DB.
Supported languages are .NET, Java, Node.js, and
Python. Depending on the API that you want to use for
working with Cosmos DB, you can also use other
languages like Xamarin, Golang, or PHP. In this section,
you can review an example of each API and learn how to
create, read, update, and delete data using the different
APIs.

Before starting with the examples, you need to create a
Cosmos DB account for storing your data. The following
procedure shows how to create a Cosmos DB free
account with the SQL API. You can use this same
procedure for creating accounts with the other APIs we
have reviewed in this skill:

1. Sign in to the Azure portal (http://portal.azure.com).

2. In the top-left corner in the Azure portal, click the menu icon
represented by three horizontal bars, and then click Create A Resource.

3. On the New panel, under the Azure Marketplace column, click
Databases. On the Featured column, click Azure Cosmos DB.

4. On the Create Azure Cosmos DB Account blade, in the Resource Group
drop-down menu, click the Create New link below the drop-down menu.

http://portal.azure.com/

In the pop-up dialog box, type a name for the new Resource Group.
Alternatively, you can select an existing Resource Group from the drop-
down menu.

5. In the Instance Details section, type an Account Name.

6. In the API drop-down menu, ensure that you have selected the option
Core (SQL), as shown in Figure 2-1.

Figure 2-1 Selecting a Cosmos DB API

7. Ensure that the Notebooks switch is set to Off.

8. Ensure that the Apply Free Tier Discount switch is set to Apply.

9. On the Location drop-down menu, select the region most appropriate
for you. If you are using App Services or virtual machines, you should
select the same region in which you deployed those services.

10. In the Account Type, set the value Non-Production.

11. Leave Geo-Redundancy and Multi-Region Write disabled.

12. In the bottom-left corner of the Create Azure Cosmos DB Account
blade, click the Review + Create button.

13. In the bottom-left corner of the Review + Create tab, click the Create
button to start the deployment of your Cosmos DB account.

Note Azure Cosmos DB Emulator
You can use the Azure Cosmos DB emulator during the development stage of your
application. You should bear in mind that there are some limitations when working with
the emulator instead of a real Cosmos DB account. The emulator is only supported on
Windows platforms or Docker for Windows. You can review all characteristics of the
Cosmos DB emulator at https://docs.microsoft.com/en-us/azure/cosmos-db/local-
emulator.

 Exam Tip

You can use different APIs for accessing your
Cosmos DB database. Each API offers different
feature depending on the way you need to
represent your data. Remember that you cannot
change the API once you have created your
Cosmos DB database.

https://docs.microsoft.com/en-us/azure/cosmos-db/local-emulator

Implement partitioning schemes

When you save data to your Cosmos DB account—
independently of the API that you decide to use for
accessing your data—Azure places the data in different
servers to accommodate the performance and
throughput that you require from a premium storage
service like Cosmos DB. The storage services use
partitions to distribute the data. Cosmos DB slices your
data into smaller pieces called partitions that are placed
on the storage server. There are two different types of
partitions when working with Cosmos DB:

Logical You can divide a Cosmos DB container into smaller
pieces based on your criteria. Each of these smaller pieces is a
logical partition. All items stored in a logical partition share the
same partition key.

Physical These partitions are a group of replicas of your data that
is physically stored on the servers. Azure automatically manages
this group of replicas or replica sets. A physical partition can
contain one or more logical partitions.

Need More Review? Physical Partition
The only control that you have on how the data is distributed across physical partitions
is setting the partition keys. If you want to review how the logical partitions and physical
partitions are related to each other, consult the following article:
https://docs.microsoft.com/en-us/azure/cosmos-db/partition-data#physical-partitions.

By default, any logical partition has a limit of 20 GB for
storing data. When you are configuring a new collection,
you need to decide whether you want your collection to
be stored in a single logical partition and keep it under
the limit of 20 GB or allow it to grow over that limit and
span across different logical partitions. If you need your
container to split over several partitions, Cosmos DB
needs some way to know how to distribute your data
across the different logical partitions. This is where the
partition key comes into play. Bear in mind that this
partition key is immutable, which means you cannot
change the property that you want to use as the partition
key once you have selected it.

https://docs.microsoft.com/en-us/azure/cosmos-db/partition-data#physical-partitions

Choosing the correct partition key is critical for achieving
the best performance. The reason choosing the proper
partition key is so important is because Azure creates a
logical partition for each distinct value of your partition
key. Listing 2-1 shows an example of a JSON document.

Listing 2-1 Example JSON document

{
 "id": "1",
 "firstName": "Santiago",
 "lastName": "Fernández",
 "city": "Sevilla",
 "country": "Spain"
}

Depending on your data, city or country properties
would be the right choice for the partition key. You can
find in your data that some documents have the same
value for the country property, so they are stored
together in the same logical partition. Using the id
property as the partition key means that you end with a
logical partition with a single document on each
partition. This configuration can be beneficial when your
application usually performs read workloads and uses
parallelization techniques for getting the data.

On the other hand, if you select a partition key with just a
few possible values, you can end with “hot” partitions. A
“hot” partition is a partition that receives most of the
requests when working with your data. The main
implication for these “hot” partitions is that they usually
reach the throughput limit for the partition, which
means you need to provision more throughput. Another
potential drawback is that you can reach the limit of 20
GB for a single logical partition. Because a logical
partition is the scope for efficient multidocument
transactions, selecting a partition key with a few possible
values allows you to execute transactions on many
documents inside the same partition.

Use the following guidelines when selecting your
partition key:

The storage limit for a single logical partition is 20 GB. If you
foresee that your data would require more space for each value of
the partition, you should select another partition key.

The requests to a single logical partition cannot exceed the
throughput limit for that partition. If your requests reach that
limit, they are throttled to avoid exceeding the limit. If you reach
this limit frequently, you should select another partition key
because there is a good chance that you have a “hot” partition. The
minimum throughput limit is different from databases to
containers. The minimum throughput for databases is 100 request
units per second (RU/s). The minimum throughput for containers
is 400 RU/s.

Choose partition keys with a wide range of values and access
patterns that can evenly distribute requests across logical
partitions. This allows you to achieve the right balance between
being able to execute cross-document transactions and scalability.
Using timestamp-based partition keys is usually a lousy choice for
a partition key.

Review your workload requirements. The partition key that you
choose should allow your application to perform well on reading
and writing workloads.

The parameters that you usually use on your requests and filtering
queries are good candidates for a partition key.

Need More Review? Partitioning
You can review more information about how partitioning works reviewing the following
article: https://docs.microsoft.com/en-us/azure/cosmos-db/partitioning-overview

There could be situations where none of the properties of
your items are appropriate for the partition keys. In
those situations, you can create synthetic partition keys.
A synthetic partition key is a key compound of two
concatenated properties. In our previous document
example shown in Listing 2-1, you created a new
property named partitionKey containing a string that
concatenates the values of city and country. For the
example document, the value of the partitionKey should
be Sevilla-Spain.

 Exam Tip

https://docs.microsoft.com/en-us/azure/cosmos-db/partitioning-overview

Remember that your data is distributed across
the different logic partitions by using the
partition key. For this reason, once you have
chosen a partition key, you cannot change it.

Interact with data using the appropriate SDK

Cosmos DB allows you to access data using different
types of APIs. Once you have your Cosmos DB account
ready, you can start creating your databases and
containers for working with data. Remember that once
you choose the API for your Cosmos DB account, you
cannot change it.

The following example shows how to create a console
application using .NET Core. The first example uses
Cosmos DB SQL API for creating, updating, and deleting
some elements in the Cosmos DB account:

1. Open Visual Studio Code and create a directory for storing the example
project.

2. Open the Terminal, switch to the project’s directory, and type the
following command:

dotnet new console

3. Install the NuGet package for interacting with your Cosmos DB account
using the SQL API. Type the following command in the Terminal:

Click here to view code image

dotnet add package Microsoft.Azure.Cosmos

4. Change the content of the Program.cs file using the content provided in
Listing 2-2. You need to change the namespace according to your
project’s name.

5. Sign in to the Azure portal (http://portal.azure.com).

6. In the Search box at the top of the Azure portal, type the name of your
Cosmos DB account and click the name of the account.

7. On your Cosmos DB Account blade, in the Settings section, click Keys.

8. On the Keys panel, copy the URI and Primary Keys values from the
Read-Write Keys tab. You need to provide these values to the
EndpointUri and Key Constants in the code shown in Listing 2-2. (The
most important parts of the code are shown with bold format.)

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch02_images.xhtml#pg081a
http://portal.azure.com/

Listing 2-2 Cosmos DB SQL API example

Click here to view code image

//C# .NET Core. Program.cs
using System.Collections.Immutable;
using System.Xml.Linq;
using System.Diagnostics;
using System.Runtime.CompilerServices;
using System;

using System.Linq;
using Microsoft.Azure.Cosmos;
using System.Threading.Tasks;
using ch2_1_3_SQL.Model;
using System.Net;

namespace ch2_1_3_SQL
{
 class Program
 {
 private const string EndpointUri = "<PUT YOUR
 private const string Key = "<PUT YOUR COSMOS
 private CosmosClient client;
 private Database database;
 private Container container;

 static void Main(string[] args)
 {

 try
 {
 Program demo = new Program();
 demo.StartDemo().Wait();
 }
 catch (CosmosException ce)
 {
 Exception baseException = ce.GetBaseE
 System.Console.WriteLine($"{ce.Status
 {ce.Message}, Message: {baseException
 }
 catch (Exception ex)
 {
 Exception baseException = ex.GetBaseE
 System.Console.WriteLine($"Error ocur
 {baseException.Message}");
 }

 }

 private async Task StartDemo()
 {
 Console.WriteLine("Starting Cosmos DB SQL

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch02_images.xhtml#lis2-2a

 //Create a new demo database

 string databaseName = "demoDB_" + Guid.Ne
Substring(0, 5);

 this.SendMessageToConsoleAndWait($"Creati

 this.client = new CosmosClient(EndpointUr
 this.database = await this.client.CreateD
(databaseName);

 //Create a new demo collection inside the
 //This creates a collection with a reserv
the options using a ContainerProperties object
 //This operation has pricing implications
 string containerName = "collection_" + Gu
Substring(0, 5);

 this.SendMessageToConsoleAndWait($"Creati
{containerName}...");

 this.container = await this.database.Crea
(containerName, "/LastName");

 //Create some documents in the collection
 Person person1 = new Person
 {
 Id = "Person.1",
 FirstName = "Santiago",
 LastName = "Fernandez",
 Devices = new Device[]
 {

 new Device { OperatingSystem = "
 Ram = 16, Usage = "Personal"},
 new Device { OperatingSystem = "
 Ram = 64, Usage = "Work"}
 },
 Gender = "Male",
 Address = new Address
 {
 City = "Seville",
 Country = "Spain",
 PostalCode = "28973",
 Street = "Diagonal",
 State = "Andalucia"
 },
 IsRegistered = true
 };

 await this.CreateDocumentIfNotExistsAsync
person1);

 Person person2 = new Person
 {
 Id = "Person.2",
 FirstName = "Agatha",
 LastName = "Smith",
 Devices = new Device[]
 {

 new Device { OperatingSystem = "
 Ram = 32, Usage = "Work"},
 new Device { OperatingSystem = "
 Ram = 64, Usage = "Personal"}
 },
 Gender = "Female",
 Address = new Address
 {
 City = "Laguna Beach",
 Country = "United States",
 PostalCode = "12345",
 Street = "Main",
 State = "CA"
 },
 IsRegistered = true
 };

 await this.CreateDocumentIfNotExistsAsync
person2);

 //Make some queries to the collection
 this.SendMessageToConsoleAndWait($"Gettin
{containerName}...");

 //Find documents using LINQ

 IQueryable<Person> queryablePeople = this
<Person>(true)
 .Where(p => p.Gender == "Male");

 System.Console.WriteLine("Running LINQ qu
 foreach (Person foundPerson in queryable
 {
 System.Console.WriteLine($"\tPerson:
 }

 //Find documents using SQL

 var sqlQuery = "SELECT * FROM Person WHER

 QueryDefinition queryDefinition = new Que
 FeedIterator<Person> peopleResultSetItera
Iterator<Person>(queryDefinition);

 System.Console.WriteLine("Running SQL que
 while (peopleResultSetIterator.HasMoreRes
 {
 FeedResponse<Person> currentResultSet
ReadNextAsync();
 foreach (Person foundPerson in curren
 {
 System.Console.WriteLine($"\tPers
 }
 }

 Console.WriteLine("Press any key to conti
 Console.ReadKey();

 //Update documents in a collection
 this.SendMessageToConsoleAndWait($"Updati
{containerName}...");
 person2.FirstName = "Mathew";
 person2.Gender = "Male";

 await this.container.UpsertItemAsync(pers
 this.SendMessageToConsoleAndWait($"Docume

 //Delete a single document from the colle
 this.SendMessageToConsoleAndWait($"Deleti
{containerName}...");

 PartitionKey partitionKey = new Partition
 await this.container.DeleteItemAsync<Pers
 this.SendMessageToConsoleAndWait($"Docume

 //Delete created demo database and all it
 this.SendMessageToConsoleAndWait("Cleanin
 await this.database.DeleteAsync();
 }
 private void SendMessageToConsoleAndWait(stri
 {
 Console.WriteLine(message);
 Console.WriteLine("Press any key to conti
 Console.ReadKey();
 }

 private async Task CreateDocumentIfNotExistsA
string collection, Person person)
 {
 try
 {
 await this?.container.ReadItemAsync<P
new PartitionKey(person.LastName));

 this.SendMessageToConsoleAndWait($"Do
 }
 catch (CosmosException dce)
 {

When you work with the SQL API, the Azure Cosmos DB
SDK provides you with the appropriate classes for
working with the different elements of the account. In
the example shown in Listing 2-2, you need to create a
CosmosClient object before you can access your Azure
Cosmos DB account. The Azure Cosmos DB SDK also
provides you with the classes Database and Container for
working with these elements. When you need to create a
Database or a Container, you can use
CreateDatabaseIfNotExistsAsync or
CreateContainerIfNotExistsAsync, respectively. These
IfNotExists methods automatically check to determine
whether the Container or Database exists in your Cosmos
DB account; if they don’t exist, the method automatically
creates the Container or the Database. When you create a
new container in your database, notice that in this
example, you have provided the PartitionKey using the
appropriate constructor overload.

However, when you need to create a new document in
the database, you don’t have available this type of
IfNotExists method. In this situation, you have two
options:

1. Use the method UpsertItemAsync, which creates a new document if the
document doesn’t exist or updates an existing document.

2. Implement your own version of the IfNotExists method, so you need to
check whether the document already exists in the container. If the
document doesn’t exist, then you create the actual document, as shown

 if (dce.StatusCode == HttpStatusCode.
 {

 await this?.container.CreateItemA
new PartitionKey(person.LastName));

 this.SendMessageToConsoleAndWait(
{person.Id} in collection {collection}");
 }
 }
 }
 }
}

in the following fragment from Listing 2-2. (The code in bold shows the
methods that you need to use for creating a document.)

Click here to view code image

try
{

 await
this?.container.ReadItemAsync<Person>
(person.Id, new PartitionKey
(person.LastName));

this.SendMessageToConsoleAndWait($"Document
{person.Id} already exists in
collection {collection}");
}
catch (CosmosException dce)
{
 if (dce.StatusCode ==
HttpStatusCode.NotFound)
 {

 await
this?.container.CreateItemAsync<Person>
(person,
new PartitionKey(person.LastName));

this.SendMessageToConsoleAndWait($"Created new
document {person.Id} in
collection {collection}");
 }
}

When you create the document using the
CreateItemAsync method, notice that you can provide
the value for the partition key by using the following
code snippet new PartitionKey(person.LastName). If you
don’t provide the value for the partition key, the correct
value is inferred from the document that you are trying
to insert into the database.

You need to do this verification because you get a
CosmosException with StatusCode 409 (Conflict) if you
try to create a document with the same Id of an already
existing document in the collection. Similarly, you get a
CosmosException with StatusCode 404 (Not Found) if

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch02_images.xhtml#pg087a

you try to delete a document that doesn’t exist in the
container using the DeleteItemAsync method or if you
try to replace a document that doesn’t exist in the
container using the ReplaceItemAsync method. Notice
that these two methods also accept a partition key
parameter.

When you create a document, you need to provide an Id
property of type string to your document. This property
needs to identify your document inside the collection
uniquely. If you don’t provide this property, Cosmos DB
automatically adds it to the document for you, using a
GUID string.

As you can see in the example code in Listing 2-2, you
can query your documents using LINQ or SQL sentences.
In this example, I have used a pretty simple SQL query
for getting documents that represent a person with the
male gender. However, you can construct more complex
sentences like a query that returns all people who live in
a specific country, using the WHERE Address.Country =
‘Spain’ expression, or people that have an Android device
using the WHERE ARRAY_CONTAINS(Person.Devices,
{ ‘OperatingSystem’: ‘Android’}, true) expression.

Need More Review? SQL Queries with Cosmos DB
You can review all the capabilities and features of the SQL language that Cosmos DB
implements by reviewing this article:

SQL Language Reference for Azure Cosmos DB
https://docs.microsoft.com/en-us/azure/cosmos-db/sql-api-query-reference

Once you have modified the Program.cs file, you need to
create some additional classes that you use in the main
program for managing documents. You can find these
new classes in Listings 2-3 to 2-5.

1. In the Visual Studio Code window, create a new folder named Model in
the project folder.

2. Create a new C# class file in the Model folder and name it Person.cs.

https://docs.microsoft.com/en-us/azure/cosmos-db/sql-api-query-reference

3. Replace the content of the Person.cs file with the content of Listing 2-3.
Change the namespace as needed for your project.

4. Create a new C# class file in the Model folder and name it Device.cs.

5. Replace the content of the Device.cs file with the content of Listing 2-4.
Change the namespace as needed for your project.

6. Create a new C# class file in the Model folder and name it Address.cs.

7. Replace the content of the Address.cs file with the content of Listing 2-
5. Change the namespace as needed for your project.

8. At this point, you can run the project by pressing F5 in the Visual Studio
Code window. Check to see how your code is creating and modifying the
different databases, document collections, and documents in your
Cosmos DB account. You can review the changes in your Cosmos DB
account using the Data Explorer tool in your Cosmos DB account in the
Azure portal.

Listing 2-3 Cosmos DB SQL API example: Person.cs

Click here to view code image

Listing 2-4 Cosmos DB SQL API example: Device.cs

Click here to view code image

//C# .NET Core.
using Newtonsoft.Json;

namespace ch2_1_3_SQL.Model
{
 public class Person
 {
 [JsonProperty(PropertyName="id")]
 public string Id { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public Device[] Devices { get; set; }
 public Address Address { get; set; }
 public string Gender { get; set; }
 public bool IsRegistered { get; set; }
 public override string ToString()
 {
 return JsonConvert.SerializeObject(this);
 }
 }
}

//C# .NET Core.
namespace ch2_1_3_SQL.Model
{
 public class Device
 {
 public int Ram { get; set; }

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch02_images.xhtml#lis2-3a
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch02_images.xhtml#lis2-4a

Listing 2-5 Cosmos DB SQL API example: Address.cs

Click here to view code image

//C# .NET Core.
namespace ch2_1_3_SQL.Model
{
 public class Address
 {
 public string City { get; set; }
 public string State { get; set; }
 public string PostalCode { get; set; }
 public string Country { get; set; }
 public string Street { get; set; }
 }
}

At this point, you can press F5 in your Visual Studio
Code window to execute the code. The code stops on
each step for you to be able to view the result of the
operation directly on the Azure portal. Use the following
steps for viewing the modifications in your Cosmos DB
account:

1. Sign in to the Azure portal (http://portal.azure.com).

2. In the Search box at the top of the Azure portal, type the name of your
Cosmos DB account and click the name of the account.

3. On your Cosmos DB Account blade, click Data Explorer.

4. On the Data Explorer blade, on the left side of the panel, under the label
SQL API, you should be able to see the list of databases created in your
Cosmos DB account.

Working with the MongoDB API for Cosmos DB is as
easy as working with any other Mongo DB library. You
only need to use the connection string that you can find
in the Connection String panel under the Settings section
in your Azure Cosmos DB account.

 public string OperatingSystem { get; set; }
 public int CameraMegaPixels { get; set; }
 public string Usage { get; set; }
 }
}

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch02_images.xhtml#lis2-5a
http://portal.azure.com/

The following example shows how to use Cosmos DB in
your MongoDB project. For this example, you are going
to use MERN (MongoDB, Express, React, and Node),
which is a full-stack framework for working with
MongoDB and NodeJS. Also, you need to meet the
following requirements:

You must have the latest version of NodeJS installed on your
computer.

You must have an Azure Cosmos DB account configured for using
MongoDB API. Remember that you can use the same procedure
used earlier for creating a Cosmos DB with the SQL API to create
an Azure Cosmos DB account with the MongoDB API. You only
need to select the correct API when you are creating your Cosmos
DB account.

You need one of the connection strings that you can find in the
Connection String panel in your Azure Cosmos DB account in the
Azure portal. You need to copy one of these connection strings
because you need to use it later in the code.

Use the following steps to connect a MERN project with
Cosmos DB using the MongoDB API:

1. Create a new folder for your project.

2. Open the terminal and run the following commands:

Click here to view code image

git clone https://github.com/Hashnode/mern-
starter.git
cd mern-starter
npm install

3. Open your preferred editor and open the mern-starter folder. Don’t
close the terminal window that you opened before.

4. In the mern-starter folder, in the server subfolder, open the config.js file
and replace the content of the file with the following code:

Click here to view code image

const config = {
 mongoURL: process.env.MONGO_URL ||
'<YOUR_COSMOSDB_CONNECTION_STRING>',
 port: process.env.PORT || 8000,
};
export default config;

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch02_images.xhtml#pg090-1a
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch02_images.xhtml#pg090-2a

5. On the terminal window, run the command npm start. This command
starts the NodeJS project and creates a Node server listening on port
8000.

6. Open a web browser and navigate to http://localhost:8000. This opens
the MERN web project.

7. Open a new browser window, navigate to the Azure portal, and open the
Data Explorer browser in your Azure Cosmos DB account.

8. In the MERN project, create, modify, or delete some posts. Review how
the document is created, modified, and deleted from your Cosmos DB
account.

Need More Review? Gremlin and Cassandra Examples
As you can see in the previous examples, integrating your existing code with Cosmos
DB doesn’t require too much effort or many changes to your code. For the sake of
brevity, we decided to omit the examples of how to connect your Cassandra or Gremlin
applications with Cosmos DB. You can learn how to do these integrations by reviewing
the following articles:

Quickstart: Build a .NET Framework or Core application Using the Azure
Cosmos DB Gremlin API account https://docs.microsoft.com/en-
us/azure/cosmos-db/create-graph-dotnet

Quickstart: Build a Cassandra App with .NET SDK and Azure Cosmos DB
https://docs.microsoft.com/en-us/azure/cosmos-db/create-cassandra-dotnet

Set the appropriate consistency level for
operations

One of the main benefits offered by Cosmos DB is the
ability to have your data distributed across the globe with
low latency when accessing the data. This means that you
can configure Cosmos DB for replicating your data
between any of the available Azure regions while
achieving minimal latency when your application
accesses the data from the nearest region. If you need to
replicate your data to an additional region, you only need
to add to the list of regions in which your data should be
available.

This replication across the different regions has a
drawback—the consistency of your data. To avoid
corruption, your data needs to be consistent between all
copies of your database. Fortunately, the Cosmos DB
protocol offers five levels of consistency replication.
Going from consistency to performance, you can select
how the replication protocol behaves when copying your
data between all the replicas that are configured across

https://docs.microsoft.com/en-us/azure/cosmos-db/create-graph-dotnet
https://docs.microsoft.com/en-us/azure/cosmos-db/create-cassandra-dotnet

the globe. These consistency levels are region agnostic,
which means the region that started the read or write
operation or the number of regions associated with your
Cosmos DB account doesn’t matter, even if you
configured a single region for your account. You
configure this consistency level at the Cosmos DB level,
and it applies to all 92databases, collections, and
documents stored inside the same account. You can
choose among the consistency levels shown in Figure 2-
2. Use the following procedure to select the consistency
level:

1. Sign in to the Azure portal (http://portal.azure.com).

2. In the Search box at the top of the Azure portal, type the name of your
Cosmos DB account and click the name of the account.

3. On your Cosmos DB account blade, click Default Consistency in the
Settings section.

4. On the Default Consistency blade, select the desired consistency level.
Your choices are Strong, Bounded Staleness, Session, Consistent Prefix,
and Eventual.

5. Click the Save icon in the top-left corner of the Default Consistency
blade.

Figure 2-2 Selecting the consistency level

Strong The read operations are guaranteed to return the most
recently committed version of an element; that is, the user always
reads the latest committed write. This consistency level is the only
one that offers a linearizability guarantee. This guarantee comes at
a price. It has higher latency because of the time needed to write
operation confirmations, and the availability can be affected
during failures.

Bounded Staleness The reads are guaranteed to be consistent
within a preconfigured lag. This lag can consist of a number of the
most recent (K) versions or a time interval (T). This means that if
you make write operations, the read of these operations happens
in the same order but with a maximum delay of K versions of the
written data or T seconds since you wrote the data in the database.
For reading operations that happen within a region that accepts
writes, the consistency level is identical to the Strong consistency

http://portal.azure.com/

level. This level is also known as “time-delayed linearizability
guarantee.”

Session Scoped to a client session, this consistency level offers
the best balance between a strong consistency level and the
performance provided by the eventual consistency level. It best fits
applications in which write operations occur in the context of a
user session.

Consistent Prefix This level guarantees that you always read
data in the same order that you wrote the data, but there’s no
guarantee that you can read all the data. This means that if you
write “A, B, C” you can read “A”, “A, B” or “A, B, C” but never “A,
C” or “B, A, C.”

Eventual There is no guarantee for the order in which you read
the data. In the absence of a write operation, the replicas
eventually converge. This consistency level offers better
performance at the cost of the complexity of the programming.
Use this consistency level if the order of the data is not essential
for your application.

Note Consistency, Availability, and Performance Tradeoffs
Every consistency level shown in this section has its implications in terms of data
consistency, data availability, and application performanace. You can review the
implications of choosing each of the consistency levels by reviewing the following
article: https://docs.microsoft.com/en-us/azure/cosmos-db/consistency-levels-tradeoffs.

The best consistency level choice depends on your
application and the API that you want to use to store
data. As you can see in the different consistency levels,
your application’s requirements regarding data read
consistency versus availability, latency, and throughput
are critical factors that you need to consider when
making your selection.

You should consider the following points when you use
SQL or Table API for your Cosmos DB account:

The recommended option for most applications is the level of
session consistency.

If you are considering the strong consistency level, we recommend
that you use the bonded staleness consistency level because it
provides a linearizability guarantee with a configurable delay.

If you are considering the eventual consistency level, we
recommend that you use the consistent prefix consistency level
because it provides comparable levels of availability and latency
with the advantage of guaranteed read orders.

https://docs.microsoft.com/en-us/azure/cosmos-db/consistency-levels-tradeoffs

Carefully evaluate the strong and eventual consistency levels
because they are the most extreme options. In most situations,
other consistency levels can provide a better balance between
performance, latency, and data consistency.

Need More Review? Consistency Levels Trade-Off
Each consistency level comes at a price. You can review the implications of choosing
each consistency level by reading the article “Consistency, Availability, and
Performance Tradeoffs” at https://docs.microsoft.com/en-us/azure/cosmos-
db/consistency-levels-tradeoffs.

When you use Cassandra or MongoDB APIs, Cosmos DB
maps the consistency levels offered by Cassandra and
MongoDB to the consistency level offered by Cosmos DB.
The reason for doing this is because when you use these
APIs, neither Cassandra nor MongoDB offers a well-
defined consistency level. Instead, Cassandra provides
write or read consistency levels that map to the Cosmos
DB consistency level in the following ways:

Cassandra write consistency level This level maps to the
default Cosmos DB account consistency level.

Cassandra read consistency level Cosmos DB dynamically
maps the consistency level specified by the Cassandra driver client
to one of the Cosmos DB consistency levels.

On the other hand, MongoDB allows you to configure the
following consistency levels: Write Concern, Read
Concern, and Master Directive. Similar to the mapping of
Cassandra consistency levels, Cosmos DB consistency
levels map to MongoDB consistency levels in the
following ways:

MongoDB write concern consistency level This level maps
to the default Cosmos DB account consistency level.

MongoDB read concern consistency level Cosmos DB
dynamically maps the consistency level specified by the MongoDB
driver client to one of the Cosmos DB consistency levels.

Configuring a master region You can configure a region as the
MongoDB “master” by configuring the region as the first writable
region.

Need More Review? Cassandra and Mongodb Consistency Level
Mappings

https://docs.microsoft.com/en-us/azure/cosmos-db/consistency-levels-tradeoffs

You can review how the different consistency levels map between Cassandra and
MongoDB and Cosmos DB consistency levels in the article “Consistency Levels and
Azure Cosmos DB APIs” at https://docs.microsoft.com/en-us/azure/cosmos-
db/consistency-levels-across-apis.

 Exam Tip

The consistency level impacts the latency and
availability of the data. In general terms, you
should avoid the most extreme levels as they
have a more significant impact on your program
that should be carefully evaluated. If you are
unsure of which level of consistency should use,
you should use the session level, as this is the
best-balanced level.

Create Cosmos DB containers

When you are working with Cosmos DB, you have
several layers in the hierarchy of entities managed by the
Cosmos DB account. The first layer is the Azure Cosmos
DB account, where you choose the API that you want to
use for accessing your data. Remember that this API has
implications about how the data is stored in the
databases.

The second layer in the hierarchy is the database. You
can create as many databases as you need in your
Cosmos DB account. Databases are a way of grouping
containers, and you can think in databases like in
namespaces. At this level, you can configure the
throughput associated to the containers included in the
database. Depending on the API that you are using, the
database has a different name:

SQL API Database.

Cassandra API Keyspace.

MongoDB API Database.

Gremlin API Database.

https://docs.microsoft.com/en-us/azure/cosmos-db/consistency-levels-across-apis

Table API This concept does not apply to Table API, although
under the hood when you create your first Table, Cosmos DB
creates a default database for you.

A container in an Azure Cosmos DB account is the unit of
scalability for throughput and storage. When you create
a new container, you need to set the partition key for
establishing the way that the items that are going to be
stored in the container are distributed across the
different logical and physical partitions. As we reviewed
in the “Implement partitioning schemes” section earlier
in this chapter, the throughput is distributed across the
logical partitions defined by the partition key.

When you create a new container, you can decide if the
throughput for the container is one of the two following
modes:

Dedicated All the throughput is provisioned for a container. In
this mode, Azure makes a reservation of resources for the
container that is backed by SLAs.

Shared The throughput is shared between all the containers
configured in the database, excluding those containers that have
been configured as dedicated throughput mode. The shared
throughput is configured at the database level.

When you create a Cosmos DB container, there are a set
of properties that you can configure. These properties
affect different aspects of the container or the way the
items are stored or managed. The following list shows
those properties of a container that can be configured.
Bear in mind that not all properties are available for all
APIs:

IndexingPolicy When you add an item to a container, by default,
all the properties of the item are automatically indexed. It doesn’t
matter if all the items in the collection share the same schema, or
each item has its own schema. This property allows you to
configure how to index the items in the container. You can
configure different types of indexes and include or exclude some
properties from the indexes.

TimeToLive (TTL) You can configure your container to delete
items after a period of time automatically. TimeToLive is
expressed in seconds. You can configure the TTL value at the

container or item level. If you configure the TTL at the container
level, all items in the container have the same TTL, except if you
configure a TTL for a specific item. A value of -1 in the TTL means
that the item does not expire. If you set a TTL value to an item
where its container does not have a TTL value configured, then the
TTL at item level has no effect.

ChangeFeedPolicy You can read the changes made to an item in
a container. The change feed provides you with the original and
modified values of an item. Because the changes are persisted, you
can process the changes asynchronously. You can use this feature
for triggering notifications or calling APIs when a new item is
inserted or an existing item is modified.

UniqueKeyPolicy You can configure which property of the item
is used as the unique key. Using unique keys, you ensure that you
cannot insert two items with the same value for the same item.
Bear in mind that the uniqueness is scoped to the logical partition.
For example, if your item has the properties email, firstname,
lastname, and company, and you define email as the unique key
and company as the partition key, you cannot insert an item with
96the same email and company values. You can also create
compound unique keys, like email and firstname. Once you have
created a unique key, you cannot change it. You can only define
the unique key during the creation process of the container.

Note Containers’ Properties
The properties available to the containers depends on the API that you configured for
your Azure Cosmos DB account. For a complete list of properties available for each
API please review the article at https://docs.microsoft.com/en-us/azure/cosmos-
db/databases-containers-items#azure-cosmos-containers.

Use the following procedure to create a new collection in
your Cosmos DB account. This procedure could be
slightly different depending on the API that you use for
your Cosmos DB account. In this procedure, you use a
Cosmos DB account configured with the SQL API:

1. Sign in to the Azure portal (http://portal.azure.com).

2. In the Search box at the top of the Azure portal, type the name of your
Cosmos DB account and click the name of the account.

3. On your Cosmos DB account blade, click Data Explorer.

4. On the Data Explorer blade, click the New Container icon in the top-left
corner of the blade.

5. On the Add Container panel, shown in Figure 2-3, provide a name for
the new database. If you want to add a container to an existing
database, you can select the database by clicking the Use Existing radio
button.

6. Ensure that the Provision database throughput check is selected. Using
this option, you are configuring this container as a shared throughput

https://docs.microsoft.com/en-us/azure/cosmos-db/databases-containers-items#azure-cosmos-containers
http://portal.azure.com/

container. If you want to create a dedicated throughput container,
uncheck this option.

7. Leave the Throughput value set to 400. This is the value for the
database throughput if the previous option is checked. Otherwise, this
value represents the dedicated throughput reserved for the container.

8. In the Container Id text box, type a name for the container.

9. In the Partition Key text box, type a partition key, starting with the slash
character.

10. If you want to create a unique key for this container, click the Add
Unique Key button.

11. Click the OK button at the bottom of the panel.

Figure 2-3 Creating a new collection

Need More Review? Time to Live, Indexes, and Changes Feed
You can review the details of how to configure the Time To Live, Index Policies, and
Changes Feed by reading the following articles:

Configure Time to Live in Azure Cosmos DB https://docs.microsoft.com/en-
us/azure/cosmos-db/how-to-time-to-live

Unique Key Constraints in Azure Cosmos DB https://docs.microsoft.com/en-
us/azure/cosmos-db/unique-keys

Change Feed Design Patterns in Azure Cosmos DB
https://docs.microsoft.com/en-us/azure/cosmos-db/change-feed-design-
patterns

 Exam Tip

You need to plan carefully how to create a new
container in Azure Cosmos DB. You can set
some of the properties that you can configure
only during the creation process. Once you have
created the container if you need to modify those
properties, you need to create a new container
with the needed values and migrate the data to
the new container.

Implement server-side programming including
stored procedures, triggers, and change feed
notifications

When you work with Cosmos DB API, Azure allows you
to write your triggers, stored procedures, and user-
defined functions. You can write these procedures and
functions using JavaScript. Before you can call a stored
procedure, trigger, or user-defined function, you need to
register it. You can use the Azure portal, the JavaScript
language integrated query API in Cosmos DB, or the
Cosmos DB SQL API client SDK for creating and calling
your stored procedures, triggers, and user-defined
functions.

Any stored procedure, trigger, or user-defined function
that you write is registered on a container basis. That
means that you need to register the stored procedure on
each container where you want to execute your stored
procedure. You also need to consider that stored
procedures and triggers are scoped to partitions. Any

https://docs.microsoft.com/en-us/azure/cosmos-db/how-to-time-to-live
https://docs.microsoft.com/en-us/azure/cosmos-db/unique-keys
https://docs.microsoft.com/en-us/azure/cosmos-db/change-feed-design-patterns

item with a partition key value different from the
partition key of the item that fired the trigger or the
stored procedure is not visible.

When you are writing a stored procedure, trigger, or
user-defined function, you need to create a reference to
the execution context. This context gives you access to
the requests that fired the stored procedure or trigger
and allows you to work with the responses and items that
you want to insert into the database. In general terms,
the context gives you access to all the operations that you
can perform in the Azure Cosmos DB database. The
following procedure shows how to create a stored
procedure in an Azure Cosmos DB SQL API account:

1. Open the Azure portal (https://portal.azure.com).

2. In the Search text box in the top area of the portal, type the name of
your Cosmos DB account. Remember that this needs to be an SQL API
Cosmos DB account.

3. On your Cosmos DB SQL API account, click Data Explorer.

4. Click an existing database. If you don’t have any database, create a new
one for testing purposes.

5. Click an existing container, or you can create a testing container
following the procedure that we reviewed in a previous section.

6. Click the New Stored Procedure button. This button creates a new
sample stored procedure that you can use as a template for your stored
procedures.

7. In the Stored Procedure Id text box, provide a name for the stored
procedure.

8. Replace the content of the New Stored Procedure tab with the content of
Listing 2-6.

Listing 2-6 Cosmos DB SQL API stored procedure

Click here to view code image

//JavaScript
function createNewDocument(docToCreate) {
 var context = getContext();
 var container = context.getCollection();
 var response = context.getResponse();

 console.log(docToCreate);
 var accepted = container.createDocument(contai
 docToCreate,
 function (err, docCreated) {
 if (err) throw new Error('Error creati

https://portal.azure.com/
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch02_images.xhtml#lis2-6a

9. Click the Save button.

10. Click the Execute button. This button opens the Input Parameters
blade.

11. In the Input Parameters blade, in the Partition Key Value section,
change the type from Custom to String.

12. In the Partition Key Value section, in the Value text box, type a value to
the partition key. Remember that this partition key is the one that you
have defined for the container where you are creating this stored
procedure.

13. In the Type drop-down menu in the Enter Input Parameters section,
ensure that the value String is selected.

14. In the Param text box, type the document in JSON format that you want
to insert. For the sake of simplicity, use a string with a structure similar
to {“id”: “12345”, “key”: “value”}.

15. Click the Execute button at the bottom of the Input Parameters panel.

16. In the Data Explorer navigation tree, click on the Items leaf below the
container where you are creating the stored procedure.

17. Ensure that the new document has been correctly inserted in your
container.

Note Badrequest Error
If you get a BadRequest error when you execute the previous example, review the
values of the input parameters. Remember that you cannot insert a document in a
different partition from the one that you select in the Partition Key Value. For example, if
your partition key is the field “city” and the value you provide is “Seville”, you need to
include this value in the Enter Input Parameters section. For this example, your
document should look similar to {“country”: “Spain”, “city”: “Seville”} .

Although the previous example is quite simple, there are
some interesting points that we should review. One of
the essential points that you need to consider when
programming your stored procedures, user-defined
functions or trigger, is the fact that the input parameters
always have the string type. This means that if you need
to pass an object to the stored procedure, you need to
stringify the object, and then convert back to a JSON
object by using the JSON.parse() method.

 response.setBody(docCreated);
 });

 if (!accepted) return;
}

As you can see, we use the global getContext() method
for getting a reference to the context. That context gives
us access to the features of the Cosmos DB account. Then
we got a reference to the current container by using the
getContainer() method in the context. We also use the
getResponse() method from the context for sending back
information to the client.

Because we are going to create a new document in the
container, we need to use the createDocument() method
in the container. This method requires a link to the
container where we are going to insert the document,
and the document itself. Because the methods require a
JSON document, if the value of the input parameter is
not a valid JSON string, you get a JSON parse error here.
We also provided an optional anonymous function for
managing any error that may arise during the creation of
the document. If you don’t provide a callback function,
any error is thrown as an exception.

Creating a trigger is quite similar to create a stored
procedure. The concepts are equivalent, but you need to
consider when you need to execute the action of your
trigger. If you need to make an operation before the item
is inserted into the container, you need to use a pre-
trigger. If you need to make an action after the item has
been successfully inserted in the container, you need to
use a post-trigger.

Pre-triggers cannot have input parameters. Because the
item is not actually in the database, you need to work
with the request that fired the trigger. This request
contains the information needed for inserting the new
item into the collection. You can get a reference to the
request by using the getRequest() method from the
context object. Once you have made your modifications
to the original item, you can send the modified item to
the database by using the request.setBody() method.

Need More Review? More Samples
Although the sample that we reviewed in this section could seem simplistic, it covers
some important points that you need to be aware of when programming your server-
side items. The following articles provide more detailed examples of how to create and
register stored procedures, user-defined functions, or triggers using JavaScript or C#:

How to write stored procedures, triggers, and user-defined functions in
Azure Cosmos DB https://docs.microsoft.com/en-us/azure/cosmos-db/how-to-
write-stored-procedures-triggers-udfs

How to write stored procedures and triggers in Azure Cosmos DB by
using the JavaScript query API https://docs.microsoft.com/en-
us/azure/cosmos-db/how-to-write-javascript-query-api

How to register and use stored procedures, triggers, and user-defined
functions in Azure Cosmos DB https://docs.microsoft.com/en-
us/azure/cosmos-db/how-to-use-stored-procedures-triggers-udfs

Need More Review? Change Feeds
Every change, insertion, or deletion made to an item in a collection is automatically
registered and stored in the Change Feed. You can use these operations as triggers for
Azure Functions that allow you to send notifications to other services or perform any
other action that you consider. You can review the details of how to integrate your
Azure Functions with Cosmos DB Change feed by reviewing the following articles:

How to configure the connection policy used by Azure Functions trigger
for Cosmos DB https://docs.microsoft.com/en-us/azure/cosmos-db/how-to-
configure-cosmos-db-trigger-connection-policy

Change feed in Azure Cosmos DB https://docs.microsoft.com/en-
us/azure/cosmos-db/change-feed

SKILL 2.2: DEVELOP SOLUTIONS
THAT USE BLOB STORAGE

Storing information in SQL or NoSQL databases is a
great way to save that information when you need to save
schemaless documents or if you need to guarantee the
integrity of the data. The drawback of these services is
that they are relatively expensive for storing data that
doesn’t have such requirements.

Azure Blob Storage allows you to store information that
doesn’t fit the characteristics of SQL and NoSQL storage
in the cloud. This information can be images, videos,
office documents, or more. The Azure Blob Storage still
provides high-availability features that make it an ideal
service for storing a large amount of data but at a lower

https://docs.microsoft.com/en-us/azure/cosmos-db/how-to-write-stored-procedures-triggers-udfs
https://docs.microsoft.com/en-us/azure/cosmos-db/how-to-write-javascript-query-api
https://docs.microsoft.com/en-us/azure/cosmos-db/how-to-use-stored-procedures-triggers-udfs
https://docs.microsoft.com/en-us/azure/cosmos-db/how-to-configure-cosmos-db-trigger-connection-policy
https://docs.microsoft.com/en-us/azure/cosmos-db/change-feed

price compared to the other data storage solutions that
we reviewed earlier in this chapter.

This skill covers how to

Move items in Blob Storage between Storage Accounts or
containers

Set and retrieve properties and metadata

Interact with data using the appropriate SDK

Implement data archiving and retention

Implement hot, cool, and archive storage

Move items in Blob Storage between Storage
Accounts or containers

When you are working with Azure Blob Storage, there
can be situations in which you may need to move blobs
from one Storage Account to another or between
containers. For particular situations, there are several
tools that you can use for performing these tasks:

Azure Storage Explorer Is a graphical tool that allows you to
manage the different operations with the storage services like
Azure Storage, Azure Data Lake Storage, Azure Cosmos DB, and
virtual disks.

AzCopy Is a command-line tool for performing bulk copy
operations between different sources and Azure Storage accounts.

Python Using the azure-storage-blob package, you can manage
your Azure Storage Account using Python.

SSIS The SQL Server Integration Service Feature Pack for Azure
allows you to transfer data between your on-premises data sources
and your Azure Storage Account.

One of the things that all these options have in common
is that they don’t provide the move operation as an
option. If you need to move blobs or containers between
different locations, you need to perform a copy
operation, and then delete the source blob or container
once the copy operation finishes successfully.

The following example shows how to move a blob called
testing.zip between two different containers in different
Azure Storage Accounts using Azure Storage Explorer.
For this example, you need to create two Azure Storage
Accounts with two different containers. Then upload a
blob to one of the storage accounts.

1. Open Azure Storage Explorer. You can download it from
https://azure.microsoft.com/en-us/features/storage-explorer/.

2. On the Azure Storage Explorer, on the left side of the window, click the
Manage Accounts button.

3. On the Account Management section, click the Add An Account link.

4. On the Connect To Azure Storage window, shown in Figure 2-4, ensure
that the option Add An Azure Account is selected, and in the Azure
Environment drop-down menu, the Azure option is selected.

5. Click Next.

6. Log into your Azure subscription.

7. Once you are logged in your Azure subscription, your Azure account
should appear in the Account Management.

8. Click Apply. This would automatically switch to the Explorer section.

9. On the Explorer section, in the navigation tree on the left side of the
Azure Storage Explorer window, navigate to your source Storage
Account.

10. Expand the leaf representing your source Storage Account.

Figure 2-4 Creating a new Collection

11. Expand the Blob Containers leaf below your source Storage Account
leaf.

12. Click the leaf representing the container with the blob that you want to
move. This action opens a new tab in the Azure Storage Explorer
window with the name of your container.

13. Click the blob that you want to move.

14. Click the Copy button on the menu bar on the top side of the container’s
tab.

https://azure.microsoft.com/en-us/features/storage-explorer/

15. Navigate to the destination container and click on the leaf representing
the destination container.

16. On the tab for the destination container, click the button Paste in the
menu bar.

17. Ensure that on the Activities tab at the bottom of the Azure Storage
Explorer window appears a message similar to the one shown in Figure
2-5.

Figure 2-5 Creating a new Collection

18. Click on the source container’s tab.

19. Select the blob that you want to move.

20. Click the Delete button on the menu bar in the container’s tab.

21. On the Microsoft Azure Storage Explorer – Delete dialog box, click
Delete.

The procedure for performing the same move action
using other tools like Python or AzCopy is similar to the
one shown in the previous example. You need to first
copy the blob to the destination container and once the
copy finishes successfully, you can remove the original
blob.

The AzCopy tool is ideal for doing incremental copy
scenarios or copying an entire account into another
account. You can use the following command for copying
blob items between containers in different Storage
Accounts:

Click here to view code image

azcopy copy <URL_Source_Item><Source_SASToken>
<URL_Target_Container><Target_SASToken>

Need More Review? Moving Data with Python and Ssis
You can review the details of how to move blob or containers using Python or SSIS by
consulting the following articles:

Quickstart: Manage Blobs with Python v12 SDK
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-quickstart-blobs-
python

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch02_images.xhtml#pg103a
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-quickstart-blobs-python

Move Data to or from Azure Blob Storage using SSIS Connectors
https://docs.microsoft.com/en-us/azure/machine-learning/team-data-science-
process/move-data-to-azure-blob-using-ssis

 Exam Tip

When you are performing copy or move
operations on containers or blobs, you are not
limited to the same storage account. You can
copy blobs and containers between Storage
Accounts in different regions or even
subscriptions, as long as you have enough
privileges for accessing to both accounts.

Set and retrieve properties and metadata

When you work with Azure Storage services, you can
work with some additional information assigned to your
blobs. This additional information is stored in the form
of system properties and user-defined metadata:

System properties This is information that the Storage services
automatically adds to each storage resource. You can modify some
of these system properties, while others are read-only. Some of
these system properties correspond with some HTTP headers. You
don’t need to worry about maintaining these system properties
because the Azure Storage client libraries automatically make any
needed modification for you.

User-defined metadata You can assign key-value pairs to an
Azure Storage resource. These metadata are for your own
purposes and don’t affect the behavior of the Azure Storage
service. You need to take care of updating the value of these
metadata according to your needs.

When working with blob metadata, you can use the
appropriate SDK from your preferred language, or you
can use the command az storage blob metadata from the
Azure CLI. The following example shows how to work
with properties and metadata using the .NET SDK:

1. Open Visual Studio Code and create a folder for your project.

2. In the Visual Studio Code Window, open a new terminal.

https://docs.microsoft.com/en-us/azure/machine-learning/team-data-science-process/move-data-to-azure-blob-using-ssis

3. Use the following command to create a new console project:

dotnet new console

4. Use the following command to install NuGet packages:

Click here to view code image

dotnet add package <NuGet_package_name>

5. Install the following NuGet packages:

1. Microsoft.Azure.Storage.Blob

2. Microsoft.Azure.Storage.Common

3. Microsoft.Extensions.Configuration

4. Microsoft.Extensions.Configuration.Binder

5. Microsoft.Extensions.Configuration.Json

6. In the project folder, create a new JSON file and name it
AppSettings.json. Copy the content from Listing 2-7 to the JSON file
and replace the value of the variables with the values of your storage
accounts.

7. Create a C# class file and name it AppSettings.cs.

8. Replace the contents of the AppSettings.cs file with the contents of
Listing 2-8. Change the name of the namespace to match your project’s
name.

9. Create a C# class file and name it Common.cs.

10. Replace the contents of the Common.cs file with the contents of Listing
2-9.

11. Change the name of the namespace to match your project’s name.

12. Replace the contents of the Program.cs file with the contents of Listing
2-10. Change the name of the namespace to match your project’s name.

13. Edit your .csproj project file and add the following code inside the
ItemGroup section:

Click here to view code image

<None Update="AppSettings.json">

<CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>

</None>

14. At this point, you can set some breakpoints in the Program.cs file to see,
step by step, how the code moves the blob items between the different
containers and Storage Accounts.

15. In the Visual Studio Window, press F5 to build and run your code.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch02_images.xhtml#pg105-1a
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch02_images.xhtml#pg105-2a

Listing 2-7 AppSettings.json configuration file

Click here to view code image

Listing 2-8 AppSettings.cs C# class

Click here to view code image

Listing 2-9 Common.cs C# class

Click here to view code image

{
 "SASToken": "<SASToken_from_your_first_storage_ac
 "AccountName": "<name_of_your_first_storage_accou
 "ContainerName": "<source_container_name>"
}

//C# .NET Core

using Microsoft.Extensions.Configuration;

namespace ch2_2_2
{
 public class AppSettings
 {
 public string SASToken { get; set; }
 public string AccountName { get; set; }
 public string ContainerName { get; set; }

 public static AppSettings LoadAppSettings()
 {
 IConfigurationRoot configRoot = new Confi
 .AddJsonFile("AppSettings.json",false
 .Build();
 AppSettings appSettings = configRoot.Get<
 return appSettings;
 }
 }
}

//C# .NET Core

using System;
using Microsoft.Azure.Storage;
using Microsoft.Azure.Storage.Auth;
using Microsoft.Azure.Storage.Blob;

namespace ch2_2_2
{

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch02_images.xhtml#lis2-7a
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch02_images.xhtml#lis2-8a
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch02_images.xhtml#lis2-9a

Listing 2-10 shows how to create a new container and get
a list of some system properties assigned automatically
to the container when you create it.

Listing 2-10 Program.cs C# class

Click here to view code image

 public class Common
 {

 public static CloudBlobClient CreateBlobClien
string accountName)
 {
 CloudStorageAccount storageAccount;
 CloudBlobClient blobClient;
 try
 {
 bool useHttps = true;
 StorageCredentials storageCredentials
 new StorageCredentials(SAStoken);
 storageAccount = new CloudStorageAcco
accountName, null, useHttps);
 blobClient = storageAccount.CreateClo
 }
 catch (System.Exception)
 {
 throw;
 }

 return blobClient;

 }
 }
}

//C# .NET Core
// Getting system properties from a storage resource
using System;
using System.Threading.Tasks;
using Microsoft.Azure.Storage.Blob;

namespace ch2_2_2
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Getting System propert

 AppSettings appSettings = AppSettings.Loa

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch02_images.xhtml#lis2-10a

As you can see in the previous code in Listing 2-10, you
need to use the FetchAttributes() or
FetchAttributesAsync() method before you can read the
properties from the container, stored in the Properties
property of the CloudBlobContainer or CloudBlockBlob
objects. If you get null values for system properties,
ensure that you called the FetchAttributes() method
before accessing the system property.

Working with user-defined metadata is quite similar to
working with system properties. The main difference is
that you can add your custom key pairs to the storage
resource. These user-defined metadata are stored in the
Metadata property of the storage resource. Listing 2-11
extends the example in Listing 2-10 and shows how to
set and read user-defined metadata in the container that
you created in Listing 2-10. Copy the content from
Listing 2-11 and insert the code in the Program.cs file
after the last System.Console.WriteLine().

 //Create a CloudBlobClient for working wi
 CloudBlobClient blobClient = Common.Creat
 (appSettings.SASToken, appSettings.Accou

 //Get a container reference for the new c
 CloudBlobContainer container = blobClient
 (appSettings.ContainerName);

 //Create the container if not already exi
 container.CreateIfNotExists();

 //You need to fetch the container propert
 container.FetchAttributes();
 Console.WriteLine($"Properties for contai
PrimaryUri.ToString()}");
 System.Console.WriteLine($"ETag: {contain
 System.Console.WriteLine($"LastModifiedUT
LastModified.ToString()}");
 System.Console.WriteLine($"Lease status:
ToString()}");
 System.Console.WriteLine();
 }
 }
}

Listing 2-11 Setting user-defined metadata

Click here to view code image

You can find a complete list of system properties in the
Microsoft.Azure.Storage.Blob .NET client reference at
https://docs.microsoft.com/en-
us/dotnet/api/microsoft.azure.storage.blob.blobcontain
erproperties. The BlobContainerProperties and
BlobProperties classes are responsible for storing the
system properties for the storage resources in a Blob
Storage account.

You can also view and edit system properties and user-
defined metadata by using the Azure portal, using the
Properties and Metadata sections in the Settings section
of your container, or clicking on the ellipsis next to the
blob item and selecting the Blob Properties option in the
contextual menu.

Interact with data using the appropriate SDK

Although using any of the options that we reviewed at
the beginning of the skill may be appropriate for some

//C# .NET Core
//Add some metadata to the container that we created
 container.Metadata.Add("department", "Tec
 container.Metadata["category"] = "Knowled
 container.Metadata.Add("docType", "pdfDoc

 //Save the containers metadata in Azure
 container.SetMetadata();

 //List newly added metadata. We need to f
 //able to read if not, we could get nulls
 container.FetchAttributes();

 System.Console.WriteLine("Container's met
 foreach (var item in container.Metadata)
 {
 System.Console.Write($"\tKey: {item.K
 System.Console.WriteLine($"\tValue: {
 }

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch02_images.xhtml#lis2-11a
https://docs.microsoft.com/en-us/dotnet/api/microsoft.azure.storage.blob.blobcontainerproperties

situations, you may need to get more fine-grained
control of the items that you need to move between
containers or even Storage Accounts.

Microsoft provides several SDKs for working with data in
your Storage Accounts. You can find SDKs for the main
programming languages supported by Microsoft, like
.NET, Java, Python, JavaScript (Node.js or browser), Go,
PHP, or Ruby.

The following example written in .NET Core shows how
to move a blob item between two containers in the same
Storage Account and how to move a blob item between
two containers in different Storage Accounts. Before you
can run this example, you need to create two Storage
Accounts with two blob containers. For the sake of
simplicity, you should create the two containers with the
same name in the two different Storage Accounts. Also,
you need to upload two control files as blob items to one
of the containers in one Storage Account:

1. Open Visual Studio Code and create a folder for your project.

2. In the Visual Studio Code Window, open a new terminal.

3. Use the following command to create a new console project:

dotnet new console

4. Use the following command to install NuGet packages:

Click here to view code image

dotnet add package <NuGet_package_name>

5. Install the following NuGet packages:

1. Azure.Storage.Blobs

2. Azure.Storage.Common

3. Microsoft.Extensions.Configuration

4. Microsoft.Extensions.Configuration.Binder

5. Microsoft.Extensions.Configuration.Json

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch02_images.xhtml#pg109a

6. In the project folder, create a new JSON file and name it
AppSettings.json. Copy the content from Listing 2-12 to the JSON
file.

7. Create a C# class file and name it AppSettings.cs.

8. Replace the contents of the AppSettings.cs file with the contents of
Listing 2-13. Change the name of the namespace to match your project’s
name.

9. Create a C# class file and name it Common.cs.

10. Replace the contents of the Common.cs file with the contents of Listing
2-14.

11. Change the name of the namespace to match your project’s name.

12. Replace the contents of the Program.cs file with the contents of Listing
2-15. Change the name of the namespace to match your project’s name.

13. Edit your .csproj project file and add the following code inside the
ItemGroup section:

Click here to view code image

<None Update="AppSettings.json">

<CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>

</None>

14. At this point, you can set some breakpoints in the Program.cs file to see,
step by step, how the code moves the blob items between the different
containers and Storage Accounts.

15. In the Visual Studio Window, press F5 to build and run your code. You
can use the Azure portal or the Microsoft Azure Storage Explorer
desktop application to review how your blob items change their
locations.

Listing 2-12 AppSettings.json configuration file

Click here to view code image

Listing 2-13 AppSettings.cs C# class

{
 "SourceSASConnectionString": "<SASConnectionStrin
account>",
 "SourceAccountName": "<name_of_your_first_storage
 "SourceContainerName": "<source_container_name>",
 "DestinationSASConnectionString": "<SASConnection
account>",
 "DestinationAccountName": "<name_of_your_second_s
 "DestinationContainerName": "<destination_contain
}

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch02_images.xhtml#pg110a
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch02_images.xhtml#lis2-12a

Click here to view code image

Listing 2-14 Common.cs C# class

Click here to view code image

//C# .NET Core
using Microsoft.Extensions.Configuration;

namespace ch2_2_3
{
 public class AppSettings
 {
 public string SourceSASConnectionString { get
 public string SourceAccountName { get; set; }
 public string SourceContainerName { get; set;
 public string DestinationSASConnectionString
 public string DestinationAccountName { get; s
 public string DestinationContainerName { get;

 public static AppSettings LoadAppSettings()
 {
 IConfigurationRoot configRoot = new Confi
 .AddJsonFile("AppSettings.json",false
 .Build();
 AppSettings appSettings = configRoot.Get<
 return appSettings;
 }
 }
}

//C# .NET Core
using Azure.Storage.Blobs;

namespace ch2_2_3
{
 public class Common
 {

 public static BlobServiceClient CreateBlobCli
SASConnectionString)
 {
 BlobServiceClient blobClient;
 try
 {
 blobClient = new BlobServiceClient(SA
 }
 catch (System.Exception)
 {
 throw;
 }

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch02_images.xhtml#lis2-13a
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch02_images.xhtml#lis2-14a

In Listing 2-15, portions of the code that are significant
to the process of working with the Azure Blob Storage
service are shown in bold.

Listing 2-15 Program.cs C# class

Click here to view code image

 return blobClient;

 }
 }
}

//C# .NET Core
using System.Threading.Tasks;
using System;
using Azure.Storage.Blobs;
using Azure.Storage.Blobs.Models;

namespace ch2_2_3
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Copy items between Con
 Task.Run(async () => await StartContainer
 Console.WriteLine("Move items between Sto
 Task.Run(async () => await StartAccountDe
 }

 public static async Task StartContainersDemo(
 {
 string sourceBlobFileName = "Testing.zip"
 AppSettings appSettings = AppSettings.Loa

 //Get a cloud client for the source Stora
 BlobServiceClient sourceClient = Common.C
(appSettings.SourceSASConnectionString);

 //Get a reference for each container
 var sourceContainerReference = sourceClie
(appSettings.SourceContainerName);
 var destinationContainerReference = sourc
Client(appSettings.DestinationContainerName);

 //Get a reference for the source blob
 var sourceBlobReference = sourceContainer
(sourceBlobFileName);
 var destinationBlobReference = destinatio

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch02_images.xhtml#lis2-15a

In this example, you made two different operations—a
copy between containers in the same Storage Account
and a movement between containers in different Storage
Accounts. As you can see in the code shown previously in
Listing 2-15, the high-level procedure for moving blob
items between containers is

1. Create a BlobServiceClient instance for each Storage Account that is
involved in the blob item movement.

GetBlobClient(sourceBlobFileName);

 //Copy the blob from the source container
 await destinationBlobReference.StartCopyF
Reference.Uri);

 }

 public static async Task StartAccountDemo()
 {
 string sourceBlobFileName = "Testing.zip"
 AppSettings appSettings = AppSettings.Loa

 //Get a cloud client for the source Stora
 BlobServiceClient sourceClient = Common.C
(appSettings.SourceSASConnectionString);
 //Get a cloud client for the destination
 BlobServiceClient destinationClient = Com
FromSAS(appSettings.DestinationSASConnectionString);

 //Get a reference for each container
 var sourceContainerReference = sourceClie
(appSettings.SourceContainerName);
 var destinationContainerReference = desti
Client(appSettings.DestinationContainerName);

 //Get a reference for the source blob
 var sourceBlobReference = sourceContainer
(sourceBlobFileName);
 var destinationBlobReference = destinatio
GetBlobClient(sourceBlobFileName);

 //Move the blob from the source container
 await destinationBlobReference.StartCopyF
Reference.Uri);
 await sourceBlobReference.DeleteAsync();
 }
 }
}

2. Create a reference for each container. If you need to move a blob item
between containers in a different Storage Account, you need to use the
BlobServiceClient object that represents each Storage Account.

3. Create a reference for each blob item. You need a reference to the source
blob item because this is the item that you are going to move. You use
the destination blob item reference for performing the actual copy
operation.

4. Once you are done with the copy, you can delete the source blob item by
using the DeleteAsync() method.

Although this code is quite straightforward, it has a
critical problem that you can solve in the following
sections. If someone else modifies the source blob item
while the write operation is pending, the copy operation
fails with an HTTP status code 412. We are going to fix
this later in this section.

You may notice that the code in this example uses a
different SDK from the code in the previous sections. The
reason for this is that, at the time of this writing, there
are available two different versions of the .NET SDK for
working with Azure Storage:

Microsoft.Azure.Storage.Blob This is the SDK version 11. You
can configure permissions on the blobs using this version.

Azure.Storage.Blobs This is the SDK version 12. This version
simplifies the way of working with Azure Storage Blobs but does
not offer the full set of features that has version 11. You cannot set
permissions using this version.

Need More Review? Cross-Account Blob Copy
You can review the details of how the asynchronous copy between Storage Accounts
works by reading this MSDN article, “Introducing Asynchronous Cross-Account Copy
Blob” at
https://blogs.msdn.microsoft.com/windowsazurestorage/2012/06/12/introducing-
asynchronous-cross-account-copy-blob/.

 Exam Tip

When you need to move a blob to any
destination, container, or Storage Account,
remember that you need first to perform a copy
operation and then delete the source blob. There

https://blogs.msdn.microsoft.com/windowsazurestorage/2012/06/12/introducing-asynchronous-cross-account-copy-blob/

is no such move method in the CloudBlockBlob
class.

When you are working with the Blob Storage service—in
which several users or processes can simultaneously
access the same Storage Account—you can face a
problem when two users or processes are trying to access
the same blob. Azure provides a leasing mechanism for
solving this kind of situation. A lease is a short block that
the blob service sets on a blob or container item for
granting exclusive access to that item. When you acquire
a lease to a blob, you get exclusive write and delete access
to that blob. If you acquire a lease in a container, you get
exclusive delete access to the container.

When you acquire a lease for a storage item, you need to
include the active lease ID on each write operation that
you want to perform on the blob with the lease. You can
choose the duration for the lease time when you request
it. This duration can last from 15 to 60 seconds or
forever. Each lease can be in one of the following five
states:

Available The lease is unlocked, and you can acquire a new lease.

Leased There is a lease granted to the resource, and the lease is
locked. You can acquire a new lease if you use the same ID that
you got when you created the lease. You can also release, change,
renew, or break the lease when it is in this status.

Expired The duration configured for the lease has expired. When
you have a lease on this status, you can acquire, renew, release, or
break the lease.

Breaking You have broken the lease, but it’s still locked until the
break period expires. In this status, you can release or break the
lease.

Broken The break period has expired, and the lease has been
broken. In this status, you can acquire, release, and break a lease.
You need to break a lease when the process that acquired the lease
finishes suddenly, such as when network connectivity issues or
any other condition results in the lease not being released
correctly. In these situations, you may end up with an orphaned
lease, and you cannot write or delete the blob with the orphaned
lease. In this situation, the only solution is to break the lease. You

may also want to break a lease when you need to force the release
of the lease manually.

You use the Azure portal for managing the lease status of
a container or blob item, or you use it programmatically
with the Azure Blob Storage client SDK. In the example
shown in Listings 2-12 to 2-15, in which we reviewed how
to copy and move items between containers or Storage
Accounts, we saw that if some other process or user
modifies the blob while our process is copying the data,
we get an error. You can avoid that situation by acquiring
a lease for the blob that you want to move. Listing 2-16
shows in bold the modification that you need to add to
the code in Listing 2-15 so that you can acquire a lease
for the blob item.

Listing 2-16 Program.cs modification

Click here to view code image

//C# .NET Core
//Add lines in bold to StartContainersDemo method on
//Add the following using statement to the beginning
//using Azure.Storage.Blobs.Specialized;
public static async Task StartContainersDemo()
 {
 string sourceBlobFileName = "Testing.zip"
 AppSettings appSettings = AppSettings.Loa

 //Get a cloud client for the source Stora
 BlobServiceClient sourceClient = Common.C
(appSettings.SourceSASConnectionString);

 //Get a reference for each container
 var sourceContainerReference = sourceClie
(appSettings.SourceContainerName);
 var destinationContainerReference = sourc
(appSettings.DestinationContainerName);

 //Get a reference for the source blob
 var sourceBlobReference = sourceContainer
(sourceBlobFileName);
 var destinationBlobReference = destinatio
sourceBlobFileName);

 //Get the lease status of the source blob
 BlobProperties sourceBlobProperties = awa
GetPropertiesAsync();
 System.Console.WriteLine($"Lease status:

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch02_images.xhtml#lis2-16a

As you can see in the previous example, you need to get a
reference to a BlobLeaseClient. This object allows you to
acquire new leases by invoking the method Acquire(). In
this example, we created an infinite lease because we
used a TimeSpan with the value -1. Once we have copied
the blob, we need to release the lease by using the
Release() method of the BlobLeaseClient.

Need More Review? Leasing Blobs and Containers
You can review the details of how leasing works for blobs and containers by consulting
the following articles:

Lease Blob https://docs.microsoft.com/en-us/rest/api/storageservices/lease-
blob

Lease Container https://docs.microsoft.com/en-
us/rest/api/storageservices/lease-container

LeaseStatus}" +
 $"\tstate: {sourceBlobPropert
 $"\tduration: {sourceBlobProp

 //Acquire an infinite lease. If you want
 //use
 //TimeSpan.FromSeconds(seconds). Remember
 //between 15 and 60.
 //We need to save the lease ID automatica
 //the lease later.
 string leaseID = Guid.NewGuid().ToString(
 BlobLeaseClient sourceLease = sourceBlobR
GetBlobLeaseClient(leaseID);

 sourceLease.Acquire(new TimeSpan(-1));

 sourceBlobProperties = await sourceBlobRe
 System.Console.WriteLine($"Lease status:
LeaseStatus}" +
 $"\tstate: {sourceBlobPropert
 $"\tduration: {sourceBlobProp

 //Copy the blob from the source container
 await destinationBlobReference.StartCopyF
(sourceBlobReference.Uri);

 //Release the lease acquired previously
 sourceLease.Release();

 }

https://docs.microsoft.com/en-us/rest/api/storageservices/lease-blob
https://docs.microsoft.com/en-us/rest/api/storageservices/lease-container

 Exam Tip

Leasing is the mechanism that you need to use to
ensure that no other users or processes can
access a blob while you are working with it. You
can create timed or infinite leases. Remember
that you need to release infinite leases manually.

Implement data archiving and retention

When you are working with data, the requirements for
accessing the data change during the lifetime of the data.
Data that has been recently placed on your storage
system usually is accessed more frequently and requires
faster access than older data. If you are using the same
type of storage for all your data, that means you are using
storage for data that is rarely accessed. If your storage is
based on SSD disk or any other technology that provides
proper performance levels, this means that you can be
potentially wasting expensive storage for data that is
rarely accessed. A solution to this situation is to move
less-frequently accessed data to a cheaper storage
system. The drawback of this solution is that you need to
implement a system for tracking the last time data has
been accessed and moving it to the right storage system.

Azure Blob Storage provides you with the ability to set
different levels of access to your data. These different
access levels, or tiers, provide different levels of
performance when accessing the data. Each different
access level has a different price. Following are the
available access tiers:

Hot You use this tier for data that you need to access more
frequently. This is the default tier that you use when you create a
new Storage Account.

Cool You can use this tier for data that is less frequently accessed
and is stored for at least 30 days.

Archive You use this tier for storing data that is rarely accessed
and is stored for at least 180 days. This access tier is available only
at the blob level. You cannot configure a Storage Account with this
access tier.

The different access tiers have the following performance
and pricing implications:

Cool tier provides slightly lower availability, reflected in the
service-level agreement (SLA) because of lower storage costs;
however, it has higher access costs.

Hot and cool tiers have similar characteristics in terms of time-to-
access and throughput.

Archive storage is offline storage. It has the lowest storage cost
rates but has higher access costs.

The lower the storage costs, the higher the access costs.

You can use storage tiering only on General Purpose v2 (GPv2)
Storage Accounts.

If you want to use storage tiering with a General Purpose v1 (GPv1)
Storage Account, you need to convert to a GPv2 Storage Account.

Moving between the different access tiers is a
transparent process for the user, but it has some
implications in terms of pricing. In general, when you are
moving from a warmer tier to a cooler tier—hot to cool or
hot to archive—you are charged for the write operations
to the destination tier. When you move from a cooler tier
to a warmer tier—from the archive to cold or from cold to
hot—you are charged for the read operations from the
source tier. Another essential thing to bear in mind is
how the data is moved when you change your data tier
from archive to any other access tier. Because data in the
archive tier is saved into offline storage, when you move
data out of the access tier, the storage service needs to
move the data back to online storage. This process is
known as blob rehydration and can take up to 15 hours.

If you don’t manually configure the access tier for a blob,
it inherits the access from its container or Storage
Account. Although you can change the access tier
manually using the Azure portal, this process creates an
administrative overload that could also lead to human

errors. Instead of manually monitoring the different
criteria for moving a blob from one tier to another, you
can implement policies that make that movement based
on the criteria that you define. You use these policies for
defining the lifecycle management of your data. You can
create these lifecycle management policies by using the
Azure portal, Azure PowerShell, Azure CLI, or REST API.

A lifecycle management policy is a JSON document in
which you define several rules that you want to apply to
the different containers or blob types. Each rule consists
of a filter set and an action set.

Filter set The filter set limits the actions to only a group of items
that match the filter criteria.

Action set You use this set to define the actions that are
performed on the items that matched the filter.

The following procedure for adding a new policy using
the Azure portal:

1. Sign in to the Azure portal (http://portal.azure.com).

2. In the Search box at the top of the Azure portal, type the name of your
Storage Account.

3. On the Blob service section, click Lifecycle Management.

4. Copy the content from Listing 2-17 and paste it into the Lifecycle
Management panel.

5. Click the Save button on the top-left corner of the panel.

Listing 2-17 Lifecycle management policy definition

Click here to view code image

{
 "rules": [
 {
 "enabled": true,
 "name": "rule1",
 "type": "Lifecycle",
 "definition": {
 "actions": {
 "baseBlob": {
 "tierToCool": {
 "daysAfterModificationGre
 },
 "tierToArchive": {

http://portal.azure.com/
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch02_images.xhtml#lis2-17a

The previous policy applies to all blobs under the
container named container-a, as stated by the
prefixMatch in the filters section. In the actions sections,
you can see the following things:

Blobs that are not modified in 30 days or more are moved to the
cool tier.

Blobs that are not modified in 90 days or more are moved to the
archive tier.

Blobs that are not modified in 2,555 days or more are deleted from
the Storage Account.

Snapshots that are older than 90 days are also deleted.
The lifecycle management engine process the policies
every 24 hours. This means that it is possible that you
won’t see your changes reflected on your Storage
Account until several hours after you made the changes.

Need More Review? Storage Access Tiers and Lifecycle Management
Policies
You can extend your knowledge about storage access tiers and lifecycle management
by reviewing the following articles from Microsoft Docs:

 "daysAfterModificationGre
 },
 "delete": {
 "daysAfterModificationGre
 }
 },
 "snapshot": {
 "delete": {
 "daysAfterCreationGreater
 }
 }
 },
 "filters": {
 "blobTypes": [
 "blockBlob"
],
 "prefixMatch": [
 "container-a"
]
 }
 }
 }
]
}

Azure Blob Storage: Hot, Cool, and Archive Access Tiers
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blob-storage-tiers

Manage the Azure Blob Storage Lifecycle https://docs.microsoft.com/en-
us/azure/storage/blobs/storage-lifecycle-management-concepts

Implement hot, cool, and archive storage

In the previous section, we reviewed how to configure
archiving and retention policies in your Storage
Accounts. In this section, we are going to review how to
work with the different performance tiers using the
Azure Storage SDK.

The following example shows how to switch a blob
between the different access tiers:

1. Open Visual Studio Code and create a folder for your project.

2. In the Visual Studio Code Window, open a new terminal.

3. Use the following command to create a new console project:

dotnet new console

4. Use the following command to install NuGet packages:

Click here to view code image

dotnet add package <NuGet_package_name>

5. Install the following NuGet packages:

1. Azure.Storage.Blobs

2. Azure.Storage.Common

3. Microsoft.Extensions.Configuration

4. Microsoft.Extensions.Configuration.Binder

5. Microsoft.Extensions.Configuration.Json

6. In the project folder, create a new JSON file and name it
AppSettings.json. Copy the content from Listing 2-18 to the JSON
file.

7. Create a C# class file and name it AppSettings.cs.

8. Replace the contents of the AppSettings.cs file with the contents of
Listing 2-19. Change the name of the namespace to match your project’s
name.

9. Create a C# class file and name it Common.cs.

https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blob-storage-tiers
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-lifecycle-management-concepts
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch02_images.xhtml#pg120a

10. Replace the contents of the Common.cs file with the contents of Listing
2-20.

11. Change the name of the namespace to match your project’s name.

12. Replace the contents of the Program.cs file with the contents of Listing
2-21. Change the name of the namespace to match your project’s name.

13. Edit your .csproj project file and add the following code inside the
ItemGroup section:

Click here to view code image

<None Update="AppSettings.json">

<CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>

</None>

14. At this point, you can set some breakpoints in the Program.cs file to see,
step by step, how the code moves the blob items between the different
containers and Storage Accounts.

15. In the Visual Studio Window, press F5 to build and run your code. You
can use the Azure portal or the Microsoft Azure Storage Explorer
desktop application to review how your blob items change their
locations.

Listing 2-18 AppSettings.json configuration file

Click here to view code image

Listing 2-19 AppSettings.cs C# class

Click here to view code image

{
 "SASConnectionString": "<SASConnectionString_from
 "AccountName": "<name_of_your_first_storage_accou
 "ContainerName": "<source_container_name>"
}

//C# .NET Core
using Microsoft.Extensions.Configuration;

namespace ch2_2_6
{
 public class AppSettings
 {
 public string SASConnectionString { get; set;
 public string AccountName { get; set; }
 public string ContainerName { get; set; }

 public static AppSettings LoadAppSettings()
 {

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch02_images.xhtml#pg121a
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch02_images.xhtml#lis2-18a
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch02_images.xhtml#lis2-19a

Listing 2-20 Common.cs C# class

Click here to view code image

In Listing 2-21, portions of the code that are significant
to the process of working with the different Access Tiers
are shown in bold.

Listing 2-21 Program.cs C# class

Click here to view code image

 IConfigurationRoot configRoot = new Confi
 .AddJsonFile("AppSettings.json",false
 .Build();
 AppSettings appSettings = configRoot.Get<
 return appSettings;
 }
 }
}

//C# .NET Core
using Azure.Storage.Blobs;

namespace ch2_2_6
{
 public class Common
 {

 public static BlobServiceClient CreateBlobCli
SASConnectionString)
 {
 BlobServiceClient blobClient;
 try
 {
 blobClient = new BlobServiceClient(SA
 }
 catch (System.Exception)
 {
 throw;
 }
 return blobClient;
 }
 }
}

//C# .NET Core
using System.Threading.Tasks;
using System;

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch02_images.xhtml#lis2-20a
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch02_images.xhtml#lis2-21a

using Azure.Storage.Blobs;
using Azure.Storage.Blobs.Models;
using Azure.Storage.Blobs.Specialized;

namespace ch2_2_6
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Moving blobs between A
 Task.Run(async () => await StartContainer
 }

 public static async Task StartContainersDemo(
 {
 string BlobFileName = "Testing.zip";
 AppSettings appSettings = AppSettings.Loa

 //Get a cloud client for the Storage Acc
 BlobServiceClient blobClient = Common.Cre
(appSettings.SASConnectionString);

 //Get a reference for each container
 var containerReference = blobClient.GetBl
ContainerName);

 //Get a reference for the blob
 var blobReference = containerReference.Ge

 //Get current Access Tier
 BlobProperties blobProperties = await blo
 System.Console.WriteLine($"Access Tier: {
 $"Inferred: {blobProperties.A
 $"Date last Access Tier chang
AccessTierChangedOn}");

 //Change Access Tier to Cool
 blobReference.SetAccessTier(AccessTier.Co

 //Get current Access Tier
 blobProperties = await blobReference.GetP
 System.Console.WriteLine($"Access Tier: {
 $"Inferred: {blobProperties.A
 $"Date last Access Tier chang
AccessTierChangedOn}");

 //Change Access Tier to Archive
 blobReference.SetAccessTier(AccessTier.Ar

 //Get current Access Tier
 blobProperties = await blobReference.GetP
 System.Console.WriteLine($"Access Tier: {
 $"Inferred: {blobProperties.A

As you can see, you can change to the different access
tiers by using the SetAccessTier() method from the
BlobClient object representing the blob that you are
working with. You should also use the metadata property
AccessTier from the blob for getting, which is the current
access tier where the blob is stored. You should pay
special attention to the ArchiveStatus property. If you try
to change the access tier for a blob that is being
rehydrated from the archive tier, you get an exception.
The AccessTierInferred property is also essential, as it
indicates if the current access tier is inherited from the
container or is configured in the blob.

 Exam Tip

You should not try to change the access tier for a
blob that is stored in an Azure Storage Account
Gen1. Only Azure Storage Account Gen2 allows
working with access tiers. If you try to use the
SetAccessTier() method with a blob in an Azure
Storage Account Gen1, you get an exception.

 $"Date last Access Tier chang
AccessTierChangedOn}");

 //Change Access Tier to Hot
 blobReference.SetAccessTier(AccessTier.Ho

 //Get current Access Tier
 blobProperties = await blobReference.GetP
 System.Console.WriteLine($"Access Tier: {
 $"Inferred: {blobProperties.A
 $"Date last Access Tier chang
AccessTierChangedOn}\t" +
 $"Archive Status: {blobProper
 }
 }
}

 Exam Tip

You can move from hot to cool and vice versa to
access tiers without needing to wait for
rehydration. The rehydration process only
happens when you move a blob from the archive
to any other access tier.

CHAPTER SUMMARY

Cosmos DB is a premium storage service that provides low-latency
access to data distributed across the globe.

The PartitionKey system property defines the partition where the
entity is stored.

Choosing the correct PartitionKey is critical for achieving the right
performance level.

You can access Cosmos DB using different APIs: SQL, Table,
Gremlin (Graph), MongoDB, and Cassandra.

You can create your custom indexes in Cosmos DB.

You can choose the property that is used as the partition key.

You should avoid selecting partition keys that create too many or
too few logical partitions.

A logical partition has a limit of 20 GB of storage.

Consistency levels define how the data is replicated between the
different regions in a Cosmos DB account.

There are five consistency levels: strong, bounded staleness,
session, consistent prefix, and eventual.

Strong consistency level provides a higher level of consistency but
also has a higher latency.

Eventual consistency level provides lower latency and lower data
consistency.

You can move blob items between containers in the same Storage
Account or containers in different Storage Accounts.

Azure Blob Storage service offers three different access tiers with
different prices for storage and accessing data.

You can move less frequently accessed data to cool or archive
access tiers to save money.

You can automatically manage the movement between access tiers
by implementing lifecycle management policies.

THOUGHT EXPERIMENT

In this thought experiment, you can demonstrate your
skills and knowledge about the topics covered in this
chapter. You can find the answers to this thought
experiment in the next section.

You are developing a web application that needs to work
with information with a structure that can change during
the lifetime of the development process. You need to
query this information using different criteria. You need
to ensure that your application returns the results of the
queries as fast as possible. Your application needs to get
information from an external system. The external
system uploads information to an Azure Blob Storage
Gen1 account.

With this information in mind, answer the following
questions:

1. During the testing phases, you realize that the
partition key is creating “hot spots.” What should
you do to solve the situation?

2. The information provided by the external system
should be stored for several years due to legal
reasons. Once the information is processed by your
application, the information is no longer needed.
You need to provide a secure and cost-effective
solution.

THOUGHT EXPERIMENT ANSWERS

This section contains the solutions to the thought
experiment.

1. A “hot spot” appears in a Cosmos DB container
when you choose a partition key that stores most of
the items in the same logical partition. You can solve
the “hot spot” by changing the partition key and

choosing a partition key that distributes the items
evenly across the different logical partitions.
Unfortunately, you cannot modify a partition key
once you have created the container. In this
scenario, you need to create a new container with
the new partition key, and then migrate all the data
to the new container using the AzCopy tool.

2. Because you need to keep the data for several years,
you need to use the Storage Account Access Tiers.
Because you are using a Gen1 Storage Account, you
cannot use access tiers in that Storage Account. You
need to upgrade your Blob Storage account to a
Gen2. Once you have your Gen2 Storage Account,
you can configure a lifecycle management policy for
automatically moving to the archive tier for those
files that have not been accessed for some time.

Chapter 3. Implement Azure
security

Regardless of the application, most of them have a
standard requirement—protect the information that it
manages. With regard to security, you need to think
about the five dimensions of information security
awareness: integrity, availability, confidentiality,
authorization, and no-repudiation. Each of these
dimensions is useful for evaluating the different risks
and the countermeasures that you need to implement for
mitigating the associated risks.

Implementing the appropriate security mechanism on
your application can be tedious and potentially error-
prone. Azure offers several mechanisms for adding
security measures to your applications, controlling the
different security aspects for accessing your data, and
controlling the services that depend on your
applications.

Skills covered in this chapter:

Skill 3.1: Implement user authentication and authorization

Skill 3.2: Implement secure cloud solutions

SKILL 3.1: IMPLEMENT USER
AUTHENTICATION AND
AUTHORIZATION

When a user wants to access your application, the user
needs to prove that he or is the person he or she claims
to be. Authentication is the action that the user performs
to prove his or her identity. The user proves his or her
identity using information known only to the user. An

authentication system needs to address how to protect
that information so only the appropriate user can access
it while nobody else—not even the authorization system
—can access it. A solution for this problem is to allow the
user to access his or her data by using two different
mechanisms for proving his or her identity—information
that only the user knows and showing something, a
token, only the user has. This approach is known as
multifactor authentication.

Azure provides a secure mechanism for integrating
authentication into your applications. You can use
single-factor or multifactor authentication systems
without worrying about the intricate details of
implementing this kind of system.

Authenticating users before they can access your
application is only part of the equation. Once your users
have been authenticated, you need to decide if any user
can access any part of your application, or if some parts
of your application are restricted. The authorization
controls which actions or sections the user can perform
once he or she has been authorized.

This skill covers how to

Implement OAuth2 authentication

Create and implement shared access signatures

Register apps and use Azure Active Directory to
authenticate users

Control access to resources by using role-based access
control (RBAC)

Implement OAuth2 authentication

The authentication process requires the user to provide
evidence that the user is the person he or she claims to
be. In the real world, you can find multiple examples of
authentication; for example, every time that you show

your driver’s license to a police officer, you are actually
authenticating against the police officer. In the digital
world, this authentication happens by providing some
information that only you know, such as a secret word (a
password), a digital certificate, or any kind of token that
only you possess.

You have a range of options for implementing such an
authentication mechanism in your application. Each
implementation has its pros and cons, and the
appropriate authentication mechanism depends on the
level of security that you require for your application.

The most basic way of authenticating a user is form-
based authentication. When you use this mechanism,
you need to program a web form that asks the user for a
username and a password. Once the user submits the
form, the information in the form is compared to the
values stored in your storage system. This storage system
can be a relational database, a NoSQL database, or even
a simple file with different formats stored on a server. If
the information provided by the user matches the
information stored in your system, the application sends
a cookie to the user’s browser. This cookie stores a key or
some type of ID for authenticating subsequent requests
to access your application without repeatedly asking the
user for his or her username and password.

One of the most significant drawbacks of using form-
based authentication is the authentication mechanism’s
dependency on cookies. Another inconvenience is that
this is stateful, which requires that your server keeps an
authentication session for tracking the activity between
the server and the client. This dependency on cookies
and authentication session management makes it more
difficult to scale solutions using form-based
authentication. One additional point to consider is that
cookies don’t work well (or it’s challenging to work with
them) on mobile apps. Fortunately, there are alternatives

to form-based authentication that are more suitable for
the requirements that have mobile or IoT scenarios; also,
there are alternatives that can improve the scalability of
your web application.

Token-based authentication is the most extended
authentication mechanism for environments and
scenarios that require high scalability or do not support
the usage of cookies. Token-based authentication
consists of a signed token that your application uses for
authenticating requests and granting access to the
resources in your application. The token does not contain
the username and password of your user. Instead, the
token stores some information about the authenticated
user that your server can use for granting access to your
application’s resources.

When you use token-based authentication, you follow a
workflow similar to the one shown in Figure 3-1:

1. An unauthenticated user connects to your web application.

2. Your web application redirects the user to the login page. This login
page can be provided by your web application acting as a security server
or by an external security server.

3. The security server validates the information provided by the user—
typically, the username and password—and generates a JWT token.

4. The security server sends the JWT token to the user. The browser or
mobile app that the user used to connect to your application is
responsible for storing this JWT token for reusing it in the following
requests.

5. The browsers or mobile app provides the JWT token to your web
application on each following request.

Figure 3-1 Basic workflow of token-based
authentication

There are several token implementations, but the most
extended one is JSON Web Token or JWT. A JWT token
consists of

Header The header contains the name of the algorithm used for
signing the token.

Body or Payload The body or payload contains different
information about the token and the purpose of this token. The
body contains several standard fields or claims that are defined in
the RFC 7519 and any other custom field that you may need for
your application.

Cryptographic signature This is a string that validates your
token and ensures that the token has not been corrupted or
incorrectly manipulated.

One of the main advantages of using token-based
authentication is that you can delegate the process of
managing the identity of the users to external security
servers. Thanks to this delegation, you can abstract from
the implementation of managing and storing JWT tokens
and usernames and passwords. That is what you do when
you want to allow your users to access your application
by using their Facebook, Google, or Twitter accounts.

Your application trusts the identification and
authentication processes made by these external security
servers or identity managers, and you grant access to
your application based on the information stored in the
JWT token provided by the security server. You still need
to store some information about the user. Still, there is
no need to know anything about the password or any
other information that the user needed to provide to the
security server for authentication.

Microsoft provides the Identity Framework for working
with authentication. You can use the Identity Framework
for adding token-based authentication to your
application. As previously mentioned, you can
implement your own token-based authentication or use
an external authentication provider that performs the
verification of the user’s login and password. The
following example shows how to create a simple web
application with Google authentication enabled. You can
use a similar procedure for enabling another social login
to your application, such as Facebook, Twitter, or
Microsoft accounts.

1. Open Visual Studio 2019 on your computer.

2. In the welcome window of Visual Studio 2019, on the Get Started
column, click Create A New Project.

3. On the Create A New Project window, on the All Languages drop-down
menu, select C#.

4. In the Search For Templates text box, type asp.net.

5. On the result list, click ASP.NET Web Application (.NET Framework).

6. Click the Next button at the bottom-right corner of the window.

7. On the Configure Your New Project, type a Project Name, a Location,
and a Solution Name for your project.

8. Click the Create button at the bottom-right corner of the window.

9. On the Create A New ASP.NET Web Application window, select MVC
template from the template list in the middle of the left side of the
window. MVC is for Model-View-Controller.

10. On the right side of the Create A New ASP.NET Web Application
window, in the Authentication section, click the Change link.

11. On the Change Authentication window, select Individual User Accounts
from the available options in the left column.

12. Click the OK button for closing the Change Authentication window.

13. Click the Create button at the bottom-right corner of the window.

At this point, you have created a basic ASP.NET web
application configured for using form-based
authentication. Now, you can check that the basic
authentication in this application works. At this point,
you are not using OAuth2 authentication:

1. Press F5 to run the project.

2. In the top-right corner of your application’s web browser, click Register.

3. On the Register form, enter an email address and password.

4. Click the Register button at the bottom of the form.

Once you have registered, you are automatically logged
on, and you can log off and log in again to ensure
everything works properly.

Now, use the following steps for modifying the newly
created web application for adding OAuth2
authentication:

1. In the Solution Explorer, click the name of your project and press F4.

2. In the Development Server section, ensure the value of the SSL Enabled
setting is set to True.

3. Copy the SSL URL below the SSL Enabled setting, and close the
Properties window.

4. In the Solution Explorer, right-click the project’s name and click
Properties at the bottom of the contextual menu. This opens your
project’s csproj file in a new tab.

5. On your project’s csproj file tab, select the Web tab and paste the SSL
URL in the Project Url text box in the Servers section.

6. Open the HomeController.cs file and add the RequireHttps attribute
to the HomeController class:

Click here to view code image

[RequireHttps]
public class HomeController : Controller
{
 public ActionResult Index()

7. Create a Google Project for integrating your web application with
Google’s authentication platform. You need a Google account for these
steps:

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch03_images.xhtml#pg131a

1. Log in to your Google account.

2. Navigate to https://developers.google.com/identity/sign-
in/web/devconsole-project.

3. Click Configure A Project.

4. On the Configure A Project For Google Sign-In dialog box, select
Create A New Project from the drop-down menu.

5. Enter a name for your project and click Next at the bottom-left
corner of the dialog box.

6. On the Configure Your OAuth Client dialog box, type the name of
your web application. This name is shown in the consent window
that appears to the user during login.

7. Click Next at the bottom-left corner of the dialog box.

8. On the Configure Your OAuth Client dialog box, select Web
Server in the Where Are You Calling From? drop-down menu.

9. In the Authorized Redirect URIs text box, use the URL SSL that
you copied in step 4 and create a redirect URI with this
structure:

<YOUR_URL_SSL>/signin-google

Use the following example for your reference:

Click here to view code image

https://localhost:44395/signin-google

10. Click Create in the bottom-left corner of the dialog box.

11. On the You’re All Set! dialog box, click the Download Client
Configuration button. Alternatively, you can copy the Client ID
and Client Secret fields. You need these values in a later step.

12. Click the API Console link at the bottom of the dialog box.

13. On the left side of the Google Console, click Library.

14. In the Search For APIs & Services text box, type Google+.

15. In the result list, click Google+ API.

16. In the Google+ API window, click the Enable button.

8. In the App_Start/Startup.Auth.cs file, in the ConfigureAuth method,
uncomment the following lines:

Click here to view code image

app.UseGoogleAuthentication(new
GoogleOAuth2AuthenticationOptions()
{
 ClientId = "",
 ClientSecret = ""
});

https://developers.google.com/identity/sign-in/web/devconsole-project
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch03_images.xhtml#pg132-1a
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch03_images.xhtml#pg132-2a

9. Use the Client ID and Client Secret values that you copied in step 7k and
assign the value to the corresponding variable in the preceding code.
(Note that these items need to be placed inside quotation marks.)

10. Press F5 for running the application.

11. Click Log In in the top-left corner of the web application.

12. Under the Use Another Service To Log In option on the left side of the
page, click the Google button.

13. Log in using your Google account.

14. Click the Register button. Once you are logged in with Google, you are
redirected to the web application. Because your Google account does
not exist on your application’s database, you get a registration form.

15. You are registered and logged in to your application using a Google
account.

Once you have logged in to the application using your
Google account, you can review the database and look for
the new login information. You can view the database
connections in the SQL Server Object Explorer. You can
open the SQL Server Object Explorer from the View
menu. You can see in the AspNetUsers table that there is
a new entry for your new Google account login, but the
PasswordHash field is empty. You can also review the
AspNetUserLogins table. This table contains all the
logins from external authorization providers, such as
Google, that have been registered in your application.

The previous example reviewed how you can use third-
party identity servers, like Google, for authenticating
users in your application using the OAuth2 protocol.
Now, we are going to review how to create your OAuth2
server. You usually add this type of authentication when
you need these third-party applications to access some
services or resources of your code. You can grant access
to these applications by creating a token that
authenticates the third-party application and grants
access to specific parts of your HTTP service.

The OAuth protocol addresses the need to secure access
to resources and information in your application by the
third party’s process. Without OAuth, if you want to
grant access to an external application to the resources of
your application, you need to use a username and

password. If the third-party application is compromised,
then the username and password are also compromised,
and your resources are exposed. The OAuth protocol
defines four different roles:

Resource owner This is the person or entity that can grant
access to the resources. If the resource owner is a person, it can
also be referred to as the user.

Resource server This is the server that hosts the resources that
you want to share. This server needs to be able to accept and
respond to the access codes used for accessing the resource.

Client This is the third-party application that needs to access the
resource. The client makes the needed requests to the resource
server on behalf of the resource owner. The term “client” does not
necessarily imply any specific implementation, like a server, a
desktop, or any other kind of device.

Authorization server This is the server that issues the access
token to the client for accessing the resources. The client needs to
be authenticated before it can get the correct token.

Figure 3-2 shows the basic authentication flow for
OAuth.

As you can see in Figure 3-2, the process of acquiring a
token for accessing a protected resource consists of the
following steps:

Authentication request The client requests access to the
protected resource. The resource owner, based on the privileges of
the client, grants access to the client for accessing the resource.
The authentication of the client can be directly done by the
resource owner or preferably by the authentication server.

Figure 3-2 OAuth basic authentication flow

Authentication grant When the resource owner grants the
client access to the resource, the client sends an authentication
grant, which is a code or credential that represents the permission
to access the resource, which has been granted by the resource
owner. The client uses this authentication grant credential to
request an access token to the authorization server. There are four
different mechanisms for handling this authentication:

Authorization code The client instructs the resource
owner to request authentication to the authentication
server. Once the resource owner is authenticated, the
authentication server creates an authorization code that
the resource owner sends back to the client. The client
uses this authorization code as the grant for requesting
the access token.

Implicit Using this authentication grant flow, the
authentication server does not authenticate the client.
Instead, the client gets the access token without needing
to authenticate to the resource server using an
authentication grant. This implicit flow is a simplified
authorization code flow. To improve security in this flow,
the resource server uses the redirect URI provided by the
client.

Resource owner credentials Instead of using an
authorization code or implicit authentication, the client
uses the credentials of the resource owner for
authenticating against the resource server. This type of
authentication grant should be used only when there is a
high level of trust between the client and the resource
owner.

Client credentials The client provides his or her
credentials for accessing the resource. This
authentication grant is useful for scenarios in which the
client needs access to resources that are protected by the
same authorization server as the client and are under
135the control of the client. This type of authentication
grant is also useful if the resource server and the client
arranged the same authorization for the resources and
the client.

Access token The client requests an access token from the
authorization server that allows the client to access the resource
on the resource server. The client sends this access token to the
resource server with each request to access the resource. This
access token has an expiration date. Once the access token is
expired, the token is invalid, and the client needs to request
another access token. To ease the process of renewing the access
token, the authentication server provides two different tokens—
the actual access token and a refresh token. The client uses the
refresh token when it needs to renew an expired access token.

Protected resource This is the resource that the client wants to
access. The resource server protects the resource. The client needs
to send the access token to the resource server every time it needs
to access the resource.

Need More Review? The Oauth 2.0 Authorization Framework
You can get more information about the details of how the OAuth 2.0 Authorization
Framework works by reviewing the official RFC 6749 at
https://tools.ietf.org/html/rfc6749.

The following example shows how to implement OAuth
2.0 authentication in your Web API application. In this
example, you are going to create an authorization server,
a resource server, and a client that can request an access
token before accessing the resource. For the sake of
readability, we have split the steps for implementing this
example into different parts. The following steps show
how to create the authorization server:

1. Open Visual Studio 2019.

2. Click File > New > Project.

3. On the Create A New Project window, on the All Languages drop-down
menu, select C#.

4. On the Search For Templates text box type asp.net.

5. On the result list, click ASP.NET Web Application (.NET Framework).

6. Click the Next button at the bottom-right corner of the window.

https://tools.ietf.org/html/rfc6749

7. In the Configure Your New Project window, type a Project Name, a
Location, and a Solution Name for your project.

8. Click the Create button at the bottom-right corner of the window.

9. In the Create A New ASP.NET Web Application window, click the MVC
template.

10. Click the Change link in the Authentication section on the right side of
the window.

11. On the Change Authentication window, click the Individual User
Accounts option.

12. Click the OK button on the Change Authentication window.

13. Click the Create button on the Create A New ASP.NET Web Application
window.

14. In Visual Studio, open the file at App_Start > Startup.Auth.cs, and add
the following line to the beginning of the file:

Click here to view code image

using Microsoft.Owin.Security.OAuth;

15. Add the code shown in Listing 3-1 to the Startup.Auth.cs file. You need
to add this code to the ConfigureAuth() method, after the line

Click here to view code image

app.UseTwoFactorRememberBrowserCookie(DefaultAuthenticationTypes.

TwoFactorRememberBrowserCookie);

16. Ensure the following using statements exist in the Startup.Auth.cs file
for avoiding compilation errors:

1. using System;

2. using Microsoft.AspNet.Identity;

3. using Microsoft.AspNet.Identity.Owin;

4. using Owin;

5. using Microsoft.Owin;

6. using Microsoft.Owin.Security.Cookies;

7. using Microsoft.Owin.Security.OAuth;

8. using Microsoft.Owin.Security.Infrastructure;

9. using AuthorizationServer.Constants;

10. using System.Threading.Tasks;

11. using System.Collections.Concurrent;

12. using System.Security.Claims;

13. using System.Security.Principal;

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch03_images.xhtml#pg136-1a
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch03_images.xhtml#pg136-2a

14. using System.Linq;

15. using <your_project's_name>.Models;

Listing 3-1 Adding OAuth Authorization Server

Click here to view code image

This code configures the OAuth Authentication Server by using the
UseOAuthAuthorizationServer() method. This method accepts
an OAuthAuthorizationServerOptions object for configuring
several useful endpoints:

// C#. ASP.NET.
//Setup the Authorization Server
 app.UseOAuthAuthorizationServer(new OA
 {
 AuthorizeEndpointPath = new PathSt
 TokenEndpointPath = new PathString
 ApplicationCanDisplayErrors = true
#if DEBUG
 AllowInsecureHttp = true,
#endif
 Provider = new OAuthAuthorizationS
 {
 OnValidateClientRedirectUri =
 OnValidateClientAuthentication
 OnGrantResourceOwnerCredential
 OnGrantClientCredentials = Gra
 },

// The authorization code provider is the object i
// the authorization code.
 AuthorizationCodeProvider = new Authenticatio
 {
 OnCreate = CreateAuthenticationCode,
 OnReceive = ReceiveAuthenticationCode,
 },

 // The refresh token provider is in charge in
 // token.
 RefreshTokenProvider = new AuthenticationToke
 {
 OnCreate = CreateRefreshToken,
 OnReceive = ReceiveRefreshToken,
 }
 });

 //Protect the resources on this server
 app.UseOAuthBearerAuthentication(new O
 {
 });

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch03_images.xhtml#lis3-1a

1. AuthorizeEndpointPath The authorize endpoint is the
path in the authorization server to which the client application
redirects the user-agent to obtain the user or resource owner’s
consent to access the resource. With this consent, the client
application can request an access token.

2. TokenEndpointPath This is the path in the authorization
server that the client uses to obtain an access token. If the
client is configured with a client secret, the client needs to
provide this client secret on the request for obtaining a new
token.

3. AllowInsecureHttp This setting allows the client to make
requests to the authorize and token endpoints by using HTTP
URIs instead of HTTPS URIs.

4. Provider Your authorization server application needs to
provide the needed delegated methods for processing the
different events that arise during the OAuth authorization
flow. You can do this by implementing the
OAuthAuthorizationServerProvider interface or using the
default implementation provided by the
OAuthAuthorizationServerProvider object. In this
example, you use the
OAuthAuthorizationServerProvider object and
provide four delegate functions for the different events.
Listings 3-2 to 3-5 show the different delegate methods that
you use for the events managed by this provider.

5. AuthorizationCodeProvider When the authorization
server authenticates the client, the server needs to send an
authorization code to the server. This provider manages the
events that arise during the management of the authentication
code. Listings 3-6 and 3-7 show the delegate methods that
manage the events of creating or receiving a code.

6. RefreshTokenProvider This object controls the events that
happen when the client requests a refresh of an access token.
Listings 3-8 and 3-9 show the delegate methods that control
the events of creating and receiving a request of refreshing an
access token.

17. Add the content from Listings 3-2 to 3-9 to the Startup.Auth.cs file. Add
these methods to the Startup class. The implementation of these
delegates is not suitable for production environments. For example, the
validation of the client redirect URI, and the authentication of the
clients are based on a hard-coded value stored in the Client class. In a
real-world scenario, you should have these entities stored in a database.
In this example, the creation of the access token, shown in Listing 3-4,
is stored in an in-memory dictionary. In a real-world scenario, you
should save in a database the access tokens that you grant to the clients.

Listing 3-2 OnValidateClientRedirectUri delegate

Click here to view code image

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch03_images.xhtml#lis3-2a

Listing 3-3 OnValidateClientAuthentication delegate

Click here to view code image

Listing 3-4 OnGrantResourceOwnerCredentials delegate

Click here to view code image

// C#. ASP.NET.
private Task ValidateClientRedirectUri(OAuthValida
 {
 if (context.ClientId == Clients.Client
 {
 context.Validated(Clients.Client1.
 }
 else if (context.ClientId == Clients.C
 {
 context.Validated(Clients.Client2.
 }
 return Task.FromResult(0);
 }

// C#. ASP.NET.
private Task ValidateClientAuthentication(OAuthVal
context)
 {
 string clientId;
 string clientSecret;
 if (context.TryGetBasicCredentials(out
 context.TryGetFormCredentials(out
 {

 if (clientId == Clients.Client1.Id
 Secret)
 {
 context.Validated();
 }

 else if (clientId == Clients.Clien
 Client2.Secret)
 {
 context.Validated();
 }
 }
 return Task.FromResult(0);
 }

// C#. ASP.NET.
private Task GrantResourceOwnerCredentials(OAuthGr

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch03_images.xhtml#lis3-3a
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch03_images.xhtml#lis3-4a

Listing 3-5 OnGrantClientCredentials delegate

Click here to view code image

Listing 3-6 Authorization code for OnCreate delegate

Click here to view code image

Listing 3-7 Authorization code for OnReceive delegate

Click here to view code image

context)
 {

 ClaimsIdentity identity = new ClaimsId
 UserName, OAuthDefaults.Authentication
 new Claim("urn:oauth:scope", x)));

 context.Validated(identity);

 return Task.FromResult(0);
 }

// C#. ASP.NET.
private Task GrantClientCredentials(OAuthGrantClie
 {
 var identity = new ClaimsIdentity(new
 OAuthDefaults.AuthenticationType), co
 new Claim("urn:oauth:scope", x)));
 context.Validated(identity);

 return Task.FromResult(0);
 }

// C#. ASP.NET.
private void CreateAuthenticationCode(Authenticati
 {
 context.SetToken(Guid.NewGuid().ToSt
 ToString("n"));
 authenticationCodes[context.Token] =
 }

// C#. ASP.NET.
private void ReceiveAuthenticationCode(Authenticat
 {
 string value;
 if (_authenticationCodes.TryRemove(con

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch03_images.xhtml#lis3-5a
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch03_images.xhtml#lis3-6a
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch03_images.xhtml#lis3-7a

Listing 3-8 Refresh token for OnCreate delegate

Click here to view code image

Listing 3-9 Refresh token for OnReceive delegate

Click here to view code image

18. Add the following private property to the Startup class in the
Startup.Auth.cs file:

Click here to view code image

private readonly ConcurrentDictionary<string,
string> _authenticationCodes =
 new ConcurrentDictionary<string,
string>(StringComparer.Ordinal);

19. On the Solution Explorer window, add a new folder to your project
called Constants.

20. On the Solution Explorer window, right-click the Constants folder and
click Add > New Item.

21. On the New Item window, on the tree control on the left side of the
window, click Installed > Visual C# > Code.

22. Click the template named Class.

23. At the bottom of the Add New Item window, type Clients.cs in the
Name text box.

24. Click the Add button in the bottom-right corner of the window.

 {
 context.DeserializeTicket(value);
 }
 }

// C#. ASP.NET.
private void CreateRefreshToken(AuthenticationToke
 {
 context.SetToken(context.SerializeTick
 }

// C#. ASP.NET.
private void ReceiveRefreshToken(AuthenticationTok
 {
 context.DeserializeTicket(context.Toke
 }

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch03_images.xhtml#lis3-8a
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch03_images.xhtml#lis3-9a
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch03_images.xhtml#pg141a

25. Replace the content of the Clients.cs file with the content in Listing 3-
10. Change the namespace to match your project’s name.

Listing 3-10 Clients.cs

Click here to view code image

26. On the Solution Explorer window, click your project’s name and press
F4.

27. On your project’s properties window, ensure the value of SSL Enabled is
set to True.

28. Copy the value of the SSL URL setting.

29. Right-click the project’s name and click the Properties menu item at the
bottom of the contextual menu.

30. On the project’s properties tab in Visual Studio, click the Web element
on the left side of the window.

31. In the Servers section, paste the SSL URL value that you copied in step
28 in the Project URL text box.

// C#. ASP.NET.

namespace <YOUR_PROJECT'S_NAME>.Constants
{
 public class Clients
 {
 public readonly static Client Client1 = ne
 {
 Id = "123456",
 Secret = "abcdef",
 RedirectUrl = Paths.AuthorizeCodeCallB
 };

 public readonly static Client Client2 = ne
 {
 Id = "78901",
 Secret = "aasdasdef",
 RedirectUrl = Paths.ImplicitGrantCallB
 };

 }

 public class Client
 {
 public string Id { get; set; }
 public string Secret { get; set; }

 public string RedirectUrl { get; set; }
 }
}

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch03_images.xhtml#lis3-10a

32. Add a new empty C# class to the Constants folder and name it
Paths.cs. You can repeat the steps 20–24 to create a new C# class.

33. Replace the content of the file Paths.cs with the code shown in Listing
3-11.

34. Paste the value of the SSL URL that you copied on step 28 on the
following constants:

1. AuthorizationServerBaseAddress

2. ResourceServerBaseAddress

3. ImplicitGrantCallBackPath Ensure that you don’t delete
the URI part. This constant should look like <SSL
URL>/Home/SignIn.

4. AuthorizeCodeCallBackPath Ensure that you don’t delete
the URI part. This constant should look like <SSL
URL>/Manage.

Listing 3-11 Paths.cs

Click here to view code image

At this point, you need to create the API Controller that manages the
requests to the Authorize and Token endpoint. When you configured
the Authentication Server, you used the following code snippet for
setting the endpoints that the server uses for attending OAuth requests:

Click here to view code image

app.UseOAuthAuthorizationServer(new
OAuthAuthorizationServerOptions
 {
 AuthorizeEndpointPath = new
PathString(Paths.AuthorizePath),

// C#. ASP.NET.
namespace <YOUR_PROJECT'S_NAME>.Constants
{
 public class Paths
 {
 public const string AuthorizationServerBas
 public const string ResourceServerBaseAddr
 public const string ImplicitGrantCallBackP
 "https://localhost:44317/Home/SignIn";
 public const string AuthorizeCodeCallBackP
 public const string AuthorizePath = "/OAut
 public const string TokenPath = "/OAuth/To
 public const string LoginPath = "/Account/
 public const string LogoutPath = "/Account
 public const string MePath = "/api/Me";
 }
}

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch03_images.xhtml#lis3-11a
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch03_images.xhtml#pg143a

 TokenEndpointPath = new
PathString(Paths.TokenPath),

If you review the value of the parameters AuthorizePath and
TokenPath in your Paths class, you can see that their values are
/OAuth/Authorize and /OAuth/Token, respectively. Now, you need
to create the controller that manages the requests to these endpoints.

35. In the Solution Explorer window, right-click the Controllers folders in
your project, and then choose Add > Controller.

36. On the Add Scaffold window, choose MVC 5 Controller – Empty.

37. Click the Add button.

38. On the Add Controller window, type OAuthController.

39. Open the OAuthController.cs file and replace the content of the file with
the code shown in Listing 3-12.

Listing 3-12 OAuthController.cs

Click here to view code image

// C#. ASP.NET.
using System.Security.Claims;
using System.Web;
using System.Web.Mvc;

namespace <your_project's_name>.Controllers
{
 public class OAuthController : Controller
 {

 // GET: OAuth/Authorize
 public ActionResult Authorize()
 {
 if (Response.StatusCode != 200)
 {
 return View("AuthorizeError");
 }

 var authentication = HttpContext.GetOw
 var ticket = authentication.Authentica
 var identity = ticket != null ? ticket
 if (identity == null)
 {
 authentication.Challenge("Applicat
 return new HttpUnauthorizedResult(
 }

 var scopes = (Request.QueryString.Get(

 if (Request.HttpMethod == "POST")
 {
 if (!string.IsNullOrEmpty(Request.
 {

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch03_images.xhtml#lis3-12a

40. On the Solution Explorer, right-click Views > OAuth, and then select
Add > View.

41. On the Add View window, on the View Name field, type Authorize.

42. Click Add.

43. Replace the content of the file Authorize.cshtml with the code shown in
Listing 3-13:

Listing 3-13 Authorize.cshtml

Click here to view code image

 identity = new ClaimsIdentity(
 NameClaimType, identity.RoleCl
 foreach (var scope in scopes)
 {
 identity.AddClaim(new Clai
 }
 authentication.SignIn(identity
 }
 if (!string.IsNullOrEmpty(Request.
 {
 authentication.SignOut("Applic
 authentication.Challenge("Appl
 return new HttpUnauthorizedRes
 }
 }

 return View();
 }
 }
}

// C#. ASP.NET.
@{
 ViewBag.Title = "Authorize";
}

@using System.Security.Claims
@using System.Web
@{
 var authentication = Context.GetOwinContext().
 var ticket = authentication.AuthenticateAsync(
 var identity = ticket != null ? ticket.Identit
 var scopes = (Request.QueryString.Get("scope")
}
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>@ViewBag.Title</title>
</head>

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch03_images.xhtml#lis3-13a

44. Add another empty view named AuthorizeError.

45. Replace the content of the file AuthorizeError.cshtml with the code
shown in Listing 3-14:

Listing 3-14 AuthorizeError.cshtml

Click here to view code image

<body>
 <h1>Authorization Server</h1>
 <h2>OAuth2 Authorize</h2>
 <form method="POST">
 <p>Hello, @identity.Name</p>
 <p>A third party application wants to do t

 @foreach (var scope in scopes)
 {
 @scope
 }

 <p>
 <input type="submit" name="submit.Grant
 <input type="submit" name="submit.Login
 </p>
 </form>
</body>
</html>

// C#. ASP.NET.
@{
 ViewBag.Title = "AuthorizeError";
}
@using System
@using System.Security.Claims
@using System.Web
@using Microsoft.Owin
@{
 IOwinContext owinContext = Context.GetOwinCont
 var error = owinContext.Get<string>("oauth.Err
 var errorDescription = owinContext.Get<string>
 var errorUri = owinContext.Get<string>("oauth.
}
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>@ViewBag.Title</title>
</head>
<body>
 <h1>Katana.Sandbox.WebServer</h1>
 <h2>OAuth2 Authorize Error</h2>
 <p>Error: @error</p>
 <p>@errorDescription</p>

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch03_images.xhtml#lis3-14a

This example only provides an implementation for the
Authorize endpoint for the sake of simplicity. An
authorized user in your application needs to grant access
to the resources in your application explicitly. When the
user grants those privileges, the application
automatically creates an in-memory OAuth token that
you can use to make a request to the protected resources.
In a real-world scenario, this process should be
separated in the two different endpoints—Authorize and
Token. You should use the Token endpoint for creating
or refreshing the access token issued by the
authorization server.

Now that you have created and configured your
authorization server, you can create the resource server.
In this example, you are going to create the resource
server on the same application where you implemented
the authorization server. In a real-world scenario, you
can use the same application, or you can use a different
application deployed by a different server or Azure App
Service.

1. On the Solution Explorer window, right-click the Controllers folder in
your project and click Add > Controller.

2. On the Add New Scaffolded Item window, select the Web API 2
Controller — Empty template.

3. Click the Add button.

4. In the Add Controller window, type MeController and click the Add
button.

5. Replace the content of the MeController.cs file with the code shown in
Listing 3-15. This controller is quite simple and only returns the
information stored in the token that you provide to the resource server
when you try to access the resource.

Listing 3-15 MeController.cs

Click here to view code image

</body>
</html>

// C#. ASP.NET.
using System.Collections.Generic;

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch03_images.xhtml#lis3-15a

6. On the Solution Explorer window, in the App_Start folder, rename the
file WebApiConfig.cs to Startup.WebApi.cs.

7. In the Visual Studio window, click Tools > NuGet Package Manager >
Manage NuGet Packages For Solution.

8. On the NuGet Package Manager tab, click Browse.

9. Type Microsoft asp.net web api owin and press Enter.

10. Click the Microsoft.AspNet.WebApi.Owin package.

11. On the right side of the NuGet Manager tab, click the check box beside
your project.

12. Click the Install button.

13. On the Preview Changes window, click OK.

14. On the License Acceptance, click the I Accept button.

15. Open the Startup.WebApi.cs file and change the content of the file with
the content shown in Listing 3-16.

Listing 3-16 Startup.WebApi.cs

Click here to view code image

using System.Linq;
using System.Security.Claims;
using System.Web.Http;

namespace <your_project's_name>.Controllers
{
 [Authorize]
 public class MeController : ApiController
 {
 // GET api/<controller>
 public IEnumerable<object> Get()
 {
 var identity = User.Identity as Claims
 return identity.Claims.Select(c => new
 {
 Type = c.Type,
 Value = c.Value
 });
 }
 }
}

// C#. ASP.NET.
using Microsoft.Owin.Security.OAuth;
using Owin;
using System.Web.Http;

namespace <your_project's_name>
{
 public partial class Startup

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch03_images.xhtml#lis3-16a

16. Open the Startup.cs file and add the following line at the end of the
Configuration() method:

ConfigureWebApi(app);

Once you have implemented the resource server in your
application, you should be able to make requests to the
authorization server to get access to the resource
published by the resource server. As you saw in the
OAuth workflow, you need to get authenticated by the
authorization server before you can get an access token.
This means that you need to be logged in to the
application before being able to make any requests to the
/OAuth/Authorize endpoint.

Now you can create your client application that makes
requests to the authorization server and resource server.
That client application can be the same application that
you used for implementing the authorization and
resource servers. You are going to modify the default

 {
 public void ConfigureWebApi(IAppBuilder ap
 {
 var config = new HttpConfiguration();
 // Web API configuration and services
 // Configure Web API to use only beare
 config.SuppressDefaultHostAuthenticati
 config.Filters.Add(new HostAuthenticat
 .AuthenticationType

 // Web API routes
 config.MapHttpAttributeRoutes();

 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{
 defaults: new { id = RouteParamete
);

 app.UseWebApi(config);
 }
 }
}

MVC template for making requests to the Authorization
and Resource servers.

1. In the Visual Studio window, click Tools > NuGet Package Manager >
Manage NuGet Packages For Solution.

2. In the NuGet Package Manager tab, click Browse.

3. Type DotNetOpenAuth.OAuth2.Client and press Enter.

4. Click the DotNetOpenAuth.OAuth2.Client package. This NuGet package
eases the interaction with OAuth servers.

5. On the right side of the NuGet Manager tab, click the check box beside
your project.

6. Click the Install button.

7. On the Preview Changes window, click OK.

8. Open the ManageController.cs file.

9. Add the following using statements to the ManageController.cs file:

1. using System;

2. using System.Linq;

3. using System.Threading.Tasks;

4. using System.Web;

5. using System.Web.Mvc;

6. using Microsoft.AspNet.Identity;

7. using Microsoft.AspNet.Identity.Owin;

8. using Microsoft.Owin.Security;

9. using AuthorizationServer.Models;

10. using AuthorizationServer.Constants;

11. using DotNetOpenAuth.OAuth2;

12. using System.Net.Http;

10. Replace the Index() method with the code shown in Listing 3-17.

Listing 3-17 Index method in ManageController.cs

Click here to view code image

// C#. ASP.NET.
public async Task<ActionResult> Index(ManageMessag
 {
 ViewBag.StatusMessage =
 message == ManageMessageId.ChangePassw
 changed."
 : message == ManageMessageId.SetPasswo
 set."
 : message == ManageMessageId.SetTwoFac
 authentication provider h

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch03_images.xhtml#lis3-17a

 : message == ManageMessageId.Error ? "
 : message == ManageMessageId.AddPhoneS
 added."
 : message == ManageMessageId.RemovePho
 removed."
 : "";

 var userId = User.Identity.GetUserId()
 var model = new IndexViewModel
 {
 HasPassword = HasPassword(),
 PhoneNumber = await UserManager.Ge
 TwoFactor = await UserManager.GetT
 Logins = await UserManager.GetLogi
 BrowserRemembered = await Authenti
 TwoFactorBrows
 };

 ViewBag.AccessToken = Request.Form["Ac
 ViewBag.RefreshToken = Request.Form["R
 ViewBag.Action = "";
 ViewBag.ApiResponse = "";

 InitializeWebServerClient();
 var accessToken = Request.Form["Access
 if (string.IsNullOrEmpty(accessToken))
 {

 var authorizationState = _webServe
 Request);
 if (authorizationState != null)
 {
 ViewBag.AccessToken = authoriz
 ViewBag.RefreshToken = authori
 ViewBag.Action = Request.Path;
 }
 }

 if (!string.IsNullOrEmpty(Request.Form
 {

 var userAuthorization = _webServerClie
 new[] { "bio", "notes" });
 userAuthorization.Send(HttpContext
 Response.End();
 }
 else if (!string.IsNullOrEmpty(Request
 {
 var state = new AuthorizationState
 {
 AccessToken = Request.Form["Ac
 RefreshToken = Request.Form["R
 };
 if (_webServerClient.RefreshAuthor

11. Add the following property to the ManageController class:

Click here to view code image

private WebServerClient _webServerClient;

12. Add the following helper method to the ManageController class:

Click here to view code image

private void InitializeWebServerClient()
{
 var authorizationServerUri = new
Uri(Paths.AuthorizationServerBaseAddress);
 var authorizationServer = new
AuthorizationServerDescription
 {
 AuthorizationEndpoint = new
Uri(authorizationServerUri,
Paths.AuthorizePath),
 TokenEndpoint = new
Uri(authorizationServerUri, Paths.TokenPath)
 };

_webServerClient = new
WebServerClient(authorizationServer,
Clients.Client1.Id,
Clients.Client1.Secret);
}

13. On the Application_Start() method in the Global.asax.cs file, add
the following line:

Click here to view code image

 {
 ViewBag.AccessToken = state.Ac
 ViewBag.RefreshToken = state.R
 }
 }
 else if (!string.IsNullOrEmpty(Request
 {
 var resourceServerUri = new Uri(Pa
 var client = new HttpClient(_webSe
 (accessToken));
 var body = client.GetStringAsync(n
 Paths.MePath)).Result;
 ViewBag.ApiResponse = body;
 }

 return View(model);
 }

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch03_images.xhtml#pg151-1a
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch03_images.xhtml#pg151-2a
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch03_images.xhtml#pg151-3a

AntiForgeryConfig.SuppressXFrameOptionsHeader
= true;

14. Add the following using statement to the Global.asax.cs file:

using System.Web.Helpers;

15. In the Solution Explorer window, click Views > Manage > Index.cshtml.

16. Add the code shown in Listing 3-18 after the section Two-Factor
Authentication in the Index.cshtml file.

Listing 3-18 Authorization Code Grant section

Click here to view code image

At this point, your example application is ready for
testing the implementation of the different actors that
take part in the OAuth workflow. The following steps

// C#. ASP.NET.
<dt>Authorization Code Grant Client:</dt>
 <dd>
 <form id="form1" action="@ViewBag.Action"
 <div>
 Access Token

 <input id="AccessToken" name="Acc
 value="@ViewBag.AccessT

 <input id="Authorize" name="submi
 type="submit" />

 Refresh Token

 <input id="RefreshToken" name="Re
 type="text" value="@ViewBag.Refre
 <input id="Refresh" name="submit.
 type="submit" />

 <input id="CallApi" name="submit.
 Resource API" type="submit" />
 </div>
 <div>
 @ViewBag.ApiResponse
 </div>
 </form>
 </dd>

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch03_images.xhtml#lis3-18a

show how to test your OAuth implementation to ensure
that it works correctly:

1. Open the example project in Visual Studio and press F5 to run the
project.

2. A new web browser window should open with your web application.
Click the Register link located on the top-left corner of the page.

3. On the Register page, add an email address and password and confirm
the password. Then click the Register button. You are going to use this
user to grant privileges to the OAuth client for making requests to the
/OAuth/Me endpoint.

4. Once you have registered the new user, you are automatically logged on
and redirected to the Home page.

5. On the Home page, click your user’s email link at the top-left corner of
the Home page.

6. On the Manage page, click the Authorize button, which redirects you to
the Authorization Server page.

7. On the Authorization Server page, review the information provided and
click the Grant button. After you grant access to the OAuth client
application, you get the access and refresh token shown in Figure 3-3,
which is needed to make requests to the resource server.

Figure 3-3 OAuth Access and Refresh Token

8. Click the Access Protected Resource API to make a request to the
/OAuth/Me endpoint. You should get all information stored in the
identity claim that you use for making this request, including the scopes
bio and notes.

Need More Review? Oauth Authorization Server
In this example, you reviewed how to implement the authorization and resource server,
the client, and the resource owner on the same web application. Although this is a valid
scenario, you usually would find that these roles are implemented on a separate
application. The code we reviewed is based on the example explained in the Microsoft
Docs article at https://docs.microsoft.com/en-us/aspnet/aspnet/overview/owin-and-
katana/owin-oauth-20-authorization-server. In that article, you can review how to
implement each role in separate applications .

https://docs.microsoft.com/en-us/aspnet/aspnet/overview/owin-and-katana/owin-oauth-20-authorization-server

 Exam Tip

When you are working with OAuth2
authentication, remember that you don’t need to
store the username and password information in
your system. You can delegate that task in
specialized authentication servers. Once the user
has been authenticated successfully, the
authentication server sends an access token that
you can use for confirming the identity of the
client. This access token needs to be refreshed
once the token expires. The OAuth2 can use a
refresh token for requesting a new access token
without asking the user again for his or her
credentials.

Create and implement shared access signatures

Until now, all the protection and access control
mechanisms that reviewed in this section had to do with
protecting the information managed directly by your
application. These mechanisms are good if your
application manages and presents the information to the
user. Still, they are not appropriate for other services that
can also store information managed by your application.
If your application uses Azure Storage accounts for
storing some reports, images, or documents in a table,
and you want to grant access to third parties to that
information, none of the previously reviewed
mechanisms are appropriate for this scenario.

When you are working with storage, you need to control
who and how much time a process, person, or
application can access your data. Azure Storage allows
you to control this access based on several levels of
protection:

Shared Key Authorization You use one of the two access keys
configured at the Azure Storage account level to construct the

correct request for accessing the Azure Storage account resources.
You need to use the Authorization Header for using the access key
in your request. The access key provides access to the entire Azure
Storage account and all its containers, such as blobs, files, queues,
and tables. You can consider Azure Storage account keys to be like
the root password of the Azure Storage account.

Shared Access Signatures You use Shared Access Signatures
(SAS) for narrowing the access to specific containers inside the
Storage Account. The advantage of using SAS is that you don’t
need to share the Azure Storage account’s access key. You can also
configure a higher level of granularity when setting access to your
data.

The drawback of using shared access keys is that if either
of the two access keys is exposed, the Azure Storage
account and all the containers and data in the Azure
Storage account are also exposed. The access keys also
allow us to create or delete elements in the Azure Storage
account.

Shared access signatures provide you with a mechanism
for sharing access with clients or applications to your
Azure Storage account without exposing the entire
account. You can configure each SAS with a different
level of access to each of the following:

Services You can configure SAS for granting access only to the
services that you require, such as blob, file, queue, or table.

Resource types You can configure access to a service, container,
or object. For the Blob service, this means that you can configure
the access to API calls at the service level, such as list containers. If
you configure the SAS token at the container level, you can make
API calls like getting or setting container metadata or creating new
blobs. If you decide to configure the access at the object level, you
can make API calls like creating or updating blobs in the
container.

Permissions Configure the action or actions that the user is
allowed to perform in the configured resources and services.

Date expiration You can configure the period for which the
configured SAS is valid for accessing the data.

IP addresses You can configure a single IP address or range of
IP addresses that are allowed to access your storage.

Protocols You can configure whether the access to your storage is
performed using HTTPS-only or HTTP and HTTPS protocols. You
cannot grant access to the HTTP-only protocol.

Azure Storage uses the values of previous parameters for
constructing the signature that grants access to your
storage. You can configure three different types of SAS:

User delegation SAS This type of SAS applies only to Blob
Storage. You use an Azure Active Directory user account for
securing the SAS token

Account SAS Account SAS controls access to the entire Storage
Account. You can also control access to operations at the service
level, like getting service stats or getting or setting service
properties. You need to use the storage account key for securing
this kind of SAS.

Service SAS Service SAS delegates access to only specific services
inside the Storage Account. You need to use the storage account
key for securing this kind of SAS.

Regardless of the SAS type, you need to construct a SAS
token for access. You append this SAS token to the URL
that you use for accessing your storage resource. One of
the parameters of a SAS token is the signature. The
Azure Storage Account service uses this signature to
authorize access to the storage resources. The way you
create this signature depends on the SAS type that you
are using.

For user delegation SAS, you need to use a user
delegation key created using Azure Active Directory
(Azure AD) credentials. The user used for creating this
delegation key needs to have granted the
Microsoft.Storage/storageAccounts/blobServ

ices/generateUserDelegationKey/action Role-
Base Access Control permission. We review role-based
access control authorization in the “Control access to
resources by using role-based access controls (RBAC)”
later in this chapter.

For service or account SAS, you need to use the Azure
Storage Account key for creating the signature that you
have to include in the SAS token. For constructing the
SAS URI for an Account SAS, you need to use the
parameters shown in Table 3-1.

Table 3-1 Account SAS URI parameters

Parameter Name URI Parameter Required Description

a

p

i

-

v

e

r

s

i

o

n

a

p

i

-

v

e

r

s

i

o

n

N
O

You can set the version of the storage service
API that processes your request.

S

i

g

n

e

d

V

e

r

s

i

o

n

s

v

Y
E
S

Sets the version of the signed storage service
used to authenticate your request. This version
should be 2015-04-05 or later.

S

i

g

n

e

d

S

e

r

v

i

c

e

s

s

s

Y
E
S

Sets the services to which you grant access.
You can grant access to more than one service
by combining the allowed values:

Blob You need to use the value (b) in
the SAS URI.

Queue You need to use the value (q)
in the SAS URI.

Table You need to use the value (t) in
the SAS URI.

File You need to use the value (f) in
the SAS URI.

S

i

g

n

e

d

R

e

s

o

u

r

c

e

T

y

p

e

s

S

r

t

Y
E
S

Sets the resource type to which you grant
access. You can configure more than one
resource type simultaneously by combining
more than one of the allowed values:

Service You need to use the value (s)
in the SAS URI.

Container You need to use the value
(c) in the SAS URI.

Object You need to use the value (o)
in the SAS URI.

S

i

g

n

e

d

P

e

r

m

i

s

s

i

o

n

s

p

Y
E
S

Configures the permissions that you grant to
the resource types and services configured on
previous parameters. Not all permissions
apply to all resource types and services. The
following list only shows the permissions that
apply to the Blob service:

Read You need to use the value (r) in
the SAS URI.

Write You need to use the value (w)
in the SAS URI.

Delete You need to use the value (d)
in the SAS URI.

List You need to use the value (l) in
the SAS URI.

Add You need to use the value (a) in
the SAS URI.

Create You need to use the value (c)
in the SAS URI.

If you set a permission that is meaningful only
for a service or resource type that you didn’t
set on the previous parameters, the permission
is silently ignored.

S

i

g

n

e

d

S

t

a

r

t

s

t

N
O

Sets the time and date at which the SAS token
is valid. It must be expressed in UTC using ISO
8601 format:

YYYY-MM-DD

YYYY-MM-DDThh:mmTZD

YYYY-MM-DDThh:mm:ssTZD

S

i

g

n

e

d

E

x

p

i

r

y

s

e

Y
E
S

Sets the time and date in which the SAS token
becomes invalid. It must be expressed in UTC
using ISO 8601 format.

S

i

g

n

e

d

I

P

s

i

p

N
O

Sets the IP or range of IP addresses from
which the storage service accepts requests.
When using ranges of IPs, the limits are
included in the range.

S

i

g

n

e

d

P

s

p

r

N
O

Sets the protocol allowed to request the API.
Correct values are

HTTPS only (https)

HTTP and HTTPS (https, http)

r

o

t

o

c

o

l

S

i

g

n

a

t

u

r

e

s

i

g

Y
E
S

This is an HMAC-SHA256–computed string
encoded using Base64 that the API uses for
authenticating your request. You calculate the
signature based on the parameters that you
provided in the SAS URI. This signature must
be valid to process your request.

Use the following procedure for constructing and testing
your own account SAS token:

1. Sign in to the management portal (http://portal.azure.com).

2. In the search box at the top of the Azure portal, type the name of your
Storage Account.

3. On the Storage Account blade, click Shared Access Signature in the
Settings section.

4. On the Shared Access Signature panel, deselect the File, Table, and
Queue check boxes under Allowed Services, as shown in Figure 3-4.
Leave the Blob check box selected.

Figure 3-4 Configuring the Account SAS policy

5. Ensure that all options in Allowed Resource Types and Allowed
Permissions are checked, as shown in Figure 3-4.

6. In the Start And Expiry Date/Time section, set a date for a start and
ending date and time during which the Azure Storage Account accepts
requests using this token.

7. Ensure that Allowed IP addresses have no value in the text box, and
HTTPS Only is selected in the Allowed Protocols section.

http://portal.azure.com/

8. In the Signing Key drop-down menu, make sure that you have selected
the Key1 value.

9. Click the Generate SAS And Connection String button at the bottom of
the panel.

10. Copy the Blob Service SAS URL. Now you can test your SAS token,
using a tool such as Postman, curl, a web browser, or Microsoft Azure
Storage Explorer.

11. Open Microsoft Azure Storage Explorer. If you don’t have this tool
installed, you can download it from https://azure.microsoft.com/en-
us/features/storage-explorer/.

12. On the Microsoft Azure Storage Explorer window, on the left side of the
window, click the button with a plug icon. This button opens the
Connect dialog box.

13. In the Connect dialog box, select the Use A Shared Access Signature
(SAS) URI option.

14. Click the Next button on the bottom side of the dialog box.

15. In the Attach With SAS URI, type a name for your connection in the
Display Name text box.

16. In the URI text box, paste the URL that you copied in step 10.

17. Click the Next button.

18. Click the Connect button.

Once the connection is created, you should be able to
view your Blob Storage service and create new containers
or blobs inside the containers.

If you need to narrow the access to your resources and
limit it only to tables or entities, you can create a Service
SAS. This type of SAS token is quite similar to an
Account SAS; you need to create a URI that you append
to the URL that you use to request your Blob Storage
service. Account and Service SAS share most of the URI
parameters, although some parameters are specific to the
service, and you need to consider them when creating
your Service SAS token. Table 3-2 shows the parameters
that you need to set for creating a Blob Service SAS.
Other Azure Storage services require different
parameters.

Table 3-2 BLOB Service SAS URI parameters

Parameter Name URI Parameter Required Description

https://azure.microsoft.com/en-us/features/storage-explorer/

S

i

g

n

e

d

V

e

r

s

i

o

n

S

v

Y
E
S

Sets the version of the signed storage service
used to authenticate your request. This
version should be 2015-04-05 or later.

S

i

g

n

e

d

R

e

s

o

u

r

c

e

s

r

Y
E
S

Sets the type of shared resource:

Blob You need to use the value (b) in
the SAS URI.

Container You need to use the value
(c) in the SAS URI.

S

i

g

n

e

d

P

e

r

m

i

s

s

i

o

n

S

p

Y
E
S

Configures the permissions that you grant to
the shared resource. You need to omit this
parameter if you decide to use a Stored Access
Policy.

S

i

g

s

t

N
O

Sets the time and date at which the SAS token
is valid. It must be expressed in UTC using
ISO 8601 format:

n

e

d

S

t

a

r

t

YYYY-MM-DD

YYYY-MM-DDThh:mmTZD

YYYY-MM-DDThh:mm:ssTZD

If you use an API version 2012-02-12 or later,
the difference between signedstart and
signedexpiry cannot be greater than one hour
unless you are using a container policy.

S

i

g

n

e

d

E

x

p

i

r

y

s

e

Y
E
S

Sets the time and date in which the SAS token
becomes invalid. It must be expressed in UTC
using ISO 8601 format.

You need to omit this parameter if you decide
to use a Stored Access Policy.

S

i

g

n

e

d

I

P

s

i

p

N
O

Sets the IP or range of IP addresses from
which the storage service accepts requests.
When using ranges of IPs, the limits are
included in the range.

You need to omit this parameter if you decide
to use a Stored Access Policy.

S

i

g

n

e

d

P

r

o

t

o

c

s

p

r

N
O

Sets the protocol allowed to request the API.
Valid values are

HTTPS only (https)

HTTP and HTTPS (https, http)

o

l

S

i

g

n

e

d

I

d

e

n

t

i

f

i

e

r

S

i

N
O

Relates the SAS URI that you are constructing
with a Stored Access Policy on your Storage
Account. Using Stored Access Policies
provides a greater level of security.

S

i

g

n

a

t

u

r

e

s

i

g

Y
E
S

This is an HMAC-SHA256 computed string
encoded using Base64 that the API uses for
authenticating your request. You calculate the
signature based on the parameters that you
provided in the SAS URI. This signature must
be valid to process your request.

C

a

c

h

e

-

C

o

n

t

r

o

l

r

s

c

c

N
O

Requires version (sv) set to 2013-08-15 or
later for Blob service and 2015-02-21 or later
for File service.

C

o

n

t

e

r

s

c

d

N
O

Requires version (sv) set to 2013-08-15 or
later for Blob service and 2015-02-21 or later
for File service.

n

t

-

D

i

s

p

o

s

i

t

i

o

n

C

o

n

t

e

n

t

-

E

n

c

o

d

i

n

g

r

s

c

e

N
O

Requires version (sv) set to 2013-08-15 or
later for Blob service and 2015-02-21 or later
for File service.

C

o

n

t

e

n

t

-

L

a

n

g

u

a

g

e

r

s

c

l

N
O

Requires version (sv) set to 2013-08-15 or
later for Blob service and 2015-02-21 or later
for File service.

C

o

n

t

e

n

t

-

T

y

p

e

r

s

c

t

N
O

Requires version (sv) set to 2013-08-15 or
later for Blob service and 2015-02-21 or later
for File service.

The following example shows how to create a Shared
Access Signature for a blob container. This SAS token
grants access to the blob container and all blobs stored
inside the blob container. For this example, you need an
Azure Storage Account with a blob container that is
configured with the private access level:

1. Open the Azure portal (https://portal.azure.com).

2. In the search text box at the top of the Azure portal, type the name of
your Azure Storage Account.

3. In the Results list, click the name of your Azure Storage Account.

4. On your Azure Storage Account’s blade, click StorageExplorer (preview)
in the navigation menu on the left side of the blade.

5. On the Storage Explorer (preview) panel shown in Figure 3-5, expand
the Blob Containers node and right-click the container, which you need
to grant access.

https://portal.azure.com/

Figure 3-5 Storage services in the Storage Explorer (preview)

6. In the contextual menu over your blob container, click Get Shared
Access Signature.

7. In the Shared Access Signature panel shown in Figure 3-6, configure the
Start Time, Expiry Time, and Permissions that you want to grant to the
SAS token.

Figure 3-6 Creating a Shared Access Signature

8. Click the Create button at the bottom of the panel.

9. On the Shared Access Signature panel, copy the URL of the newly
generated SAS. You can share this SAS URL with any third party who
needs to access this specific blob.

You can use these same steps for creating a SAS token for
a single blob in a container. Just navigate using the
Storage Explorer to the blob that you want to share,

right-click the blob, and click Get Shared Access
Signature in the contextual menu.

As you can imagine, one drawback of using this approach
is that anyone who has access to the SAS URL can access
the information protected by that SAS. You can improve
the security of the SAS tokens by creating a Stored
Access Policy and attaching the policy to the SAS token.
Stored Access Policies allows you to define access
policies that are associated and stored with the table that
you want to protect. When you define a Stored Access
Policy, you provide an identifier to the policy. Then you
use this identifier when you construct the Service SAS
token. You need to include this identifier when you
construct the signature that authenticates the token and
is part of the SAS itself.

The advantage of using a Stored Access Policy is that you
define and control the validity and expiration of the
policy without needing to modify the Service SAS token.
Using a Stored Access Policy also improves security by
hiding the details of the Access Policy from the user, as
you just provide the name of the Stored Access Policy.
You can associate up to five different stored access
policies.

Need More Review? Working with Stored Access Policies
Working with Stored Access Policies is similar to working with ad-hoc access policies.
You can review how to work with Stored Access Policies by reviewing the following
articles:

https://docs.microsoft.com/en-us/rest/api/storageservices/define-stored-access-
policy

https://docs.microsoft.com/en-us/azure/storage/common/storage-stored-
access-policy-define-dotnet

The following example shows how to create a user
delegation SAS token using a .NET Core console
application:

1. Open Visual Studio Code and create a folder for your project.

2. In the Visual Studio Code Window, open a new terminal.

https://docs.microsoft.com/en-us/rest/api/storageservices/define-stored-access-policy
https://docs.microsoft.com/en-us/azure/storage/common/storage-stored-access-policy-define-dotnet

3. Use the following command to create a new console project:

dotnet new console

4. Use the following command to install NuGet packages:

Click here to view code image

dotnet add package <NuGet_package_name>

5. Install the following NuGet packages:

1. Azure.Storage.Blobs

2. Azure.Identity

6. Open the Program.cs file and replace the content with the code shown
in Listing 3-19.

Listing 3-19 Program.cs

Click here to view code image

// C#. ASP.NET.
using System;
using Azure.Storage.Blobs;
using Azure.Storage.Blobs.Models;
using Azure.Storage.Sas;
using Azure;
using Azure.Identity;

namespace ch3_1_2
{
 class Program
 {
 static void Main(string[] args)
 {
 string storageAccount = "az204testing";

 DateTimeOffset startTimeKey = DateTimeOff
 DateTimeOffset endTimeKey = DateTimeOffse
 DateTimeOffset startTimeSAS = startTimeKe
 DateTimeOffset endTimeSAS = startTimeSAS.

 Uri blobEndpointUri = new Uri($"https://{
 net");

 var defaultCredentials = new DefaultAzure

 BlobServiceClient blobClient = new BlobSe
 defaultCre

 //Get the key. We are going to use this k

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch03_images.xhtml#pg161a
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch03_images.xhtml#lis3-19a

Note Authorizationpermissionmismatch
If you get an exception while running the code in Listing 3-19, and the exception
message is something similar to “This request is not authorized to perform this
operation using this permission” with the error code AuthorizationPermissionMismatch,
don’t worry; there is nothing wrong with your code. This exception happens because
the user you are using for running this code doesn’t have enough privileges for getting
a user delegation key. You can solve this issue by granting the correct permissions to
your user. We are going to review how to grant privileges by using role-based access
control in a later section .

As you can see in the piece of code in bold in Listing 3-
19, you use the GetUserDelegationKey() method for
getting a user delegation key for your Azure Storage
Account. The user you are using for getting this key
needs to have assigned the
Microsoft.Storage/storageAccounts/blobServ

ices/generateUserDelegationKey/action

permission, otherwise you get an exception.

Once you have your user delegation key, you use the
BlobSasBuilder class for creating an object that
constructs the SAS token for you. Using the instance of

 UserDelegationKey key = blobClient.GetUse
 endTimeKey);

 System.Console.WriteLine($"User Key Start
 System.Console.WriteLine($"User Key Expir
 System.Console.WriteLine($"User Key Servi
 System.Console.WriteLine($"User Key Versi

 //We need to use the BlobSasBuilder for c
 BlobSasBuilder blobSasBuilder = new BlobS
 {
 StartsOn = startTimeSAS,
 ExpiresOn = endTimeSAS
 };

 //We set the permissions Create, List, Ad
 blobSasBuilder.SetPermissions("clarw");

 string sasToken = blobSasBuilder.ToSasQue
 (key, storageAccount).ToString();

 System.Console.WriteLine($"SAS Token: {sa
 }
 }
}

the BlobSasBuilder class, you can configure the
permissions that you need for accessing the container. In
this case, you use the SetPermission() method with
the parameter clarw that matches with the permissions
shown in Table 3-1. In this example, because we didn’t
set any container name, we get a SAS token for the Azure
Blob Storage Account.

Using the ToSasQueryParameters() method from
the BlobSasBuilder class, you get the actual SAS
token. You need to provide the user delegation key that
you obtained previously to this method for getting the
SAS token.

Once you get your SAS token, you can use it for accessing
your Azure Storage Account. The code in Listing 3-20
shows how to interact with your Azure Storage Account,
using the SAS token that you created in Listing 3-19. If
you want to test this code, just replace the content of the
Program.cs file that you created in the previous example,
with the content in Listing 3-20. Before replacing your
code, you need to add the System.IO NuGet Package by
running the following command in your Visual Studio
Code terminal window:

dotnet add package System.IO

Listing 3-20 Program.cs extension

Click here to view code image

// C#. ASP.NET.
using System;
using Azure.Storage.Blobs;
using Azure.Storage.Blobs.Models;
using Azure.Storage.Sas;
using Azure;
using Azure.Identity;
using System.IO;

namespace ch3_1_2
{
 class Program

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch03_images.xhtml#lis3-20a

 {
 static void Main(string[] args)
 {
 string storageAccount = "az204testing";
 string containerName = "az204-blob-testin
 string blobName = System.IO.Path.GetRando

 DateTimeOffset startTimeKey = DateTimeOff
 DateTimeOffset endTimeKey = DateTimeOffse
 DateTimeOffset startTimeSAS = startTimeKe
 DateTimeOffset endTimeSAS = startTimeSAS.

 Uri blobEndpointUri = new Uri($"https://{
 windows.net");

 var defaultCredentials = new DefaultAzure

 BlobServiceClient blobClient = new BlobSe
 defaultCre

 //Get the key. We are going to use this k
 UserDelegationKey key = blobClient.GetUse
 endTimeKey);

 Console.WriteLine($"User Key Starts on: {
 Console.WriteLine($"User Key Expires on:
 Console.WriteLine($"User Key Service: {ke
 Console.WriteLine($"User Key Version: {ke

 //We need to use the BlobSasBuilder for c
 BlobSasBuilder blobSasBuilder = new BlobS
 {
 BlobContainerName = containerName,
 BlobName = blobName,
 Resource = "b",
 StartsOn = startTimeSAS,
 ExpiresOn = endTimeSAS,
 Protocol = Azure.Storage.Sas.SasProto
 };

 //We set the permissions Create, List, Ad
 blobSasBuilder.SetPermissions(BlobSasPerm

 string sasToken = blobSasBuilder.ToSasQue
 (key, storageAccount).ToString();

 Console.WriteLine($"SAS Token: {sasToken}

 //We construct the full URI for accessing
 UriBuilder blobUri = new UriBuilder()
 {
 Scheme = "https",
 Host = $"{storageAccount}.blob.core.wi
 Path = $"{containerName}/{blobName}",

We have put the essential parts in bold in Listing 3-20.
When you need to use the SAS token for working Azure
Storage accounts, you need to construct the correct SAS
token for the element that you are working with. This
means, if you are going to work with a container, then
you need to create a SAS token for that container and get
a reference to the container using the
BlobContainerClient. Once you have the reference to the
container, you can keep working with other child
elements without needing to create a new SAS token for
each element inside the container.

 Query = sasToken
 };

 //We create a random text file
 using (System.IO.StreamWriter sw = System
 {
 sw.Write("This is a testing blob for
 tokens");
 }

 BlobClient testingBlob = new BlobClient(b
 testingBlob.Upload(blobName);

 //Now we download the blob again and prin

 Console.WriteLine($"Reading content from
 Console.WriteLine();

 BlobDownloadInfo downloadInfo = testingBl

 using (StreamReader sr = new StreamReader
 {
 string line;
 while ((line = sr.ReadLine()) != null
 {
 Console.WriteLine(line);
 }
 }

 Console.WriteLine();
 Console.WriteLine("Finished reading conte

 }
 }
}

In the example in Listing 3-20, we create a random text
file with some content that we uploaded to the container
and then downloaded again. Then we created a SAS
token for uploading the random text file. Notice that we
created the SAS token pointing to a blob doesn’t even
exist. Once we have the correct SAS token, with the
correct permissions, we created a BlobClient object
using the URI pointing to the final location in the Azure
Blob Storage account inside the container. We use the
SAS token as the query parameter of the URI. Once we
have our BlobClient object representing the blob, we
can perform all the needed operations without needing
the create a new SAS token for the same blob, as long as
the token has not expired.

Need More Review? Shared Access Signatures
If you want to read more about how to work with Shared Access Signatures, not only
with the Azure Blob Storage service, but with other Azure Storage services, like Tables,
Queue, or Files, you can review the article at https://docs.microsoft.com/en-
us/rest/api/storageservices/delegate-access-with-shared-access-signature.

 Exam Tip

If you plan to work with user delegation SAS,
you need to consider that this type of SAS is
available only for Azure Blob Storage and Azure
Data Lake Storage Gen2. You cannot use either
Stored Access Policies when working with user
delegation SAS.

Register apps and use Azure Active Directory to
authenticate users

You can secure access to the information managed by
your application by using several mechanisms, like form-
based authentication, SSL authentication, Windows
authentication, or OAuth2 authentication, among others.
Each of these mechanisms has advantages and
disadvantages.

https://docs.microsoft.com/en-us/rest/api/storageservices/delegate-access-with-shared-access-signature

The “Implement OAuth2 authentication” section earlier
in this chapter reviewed how to use OAuth2
authentication with a basic web application. When we
reviewed the OAuth2 concepts in that section, you saw
that in the OAuth2 authentication flow, there is a
security server that takes care of providing the security
mechanisms for authenticating the users. Once the
security server authenticates, the server emits a token
that your application can validate and use for
authenticating the request from your application’s client.
When working with the security server, you can use your
own implementation of an OAuth2 server, or you can
rely on third-party security services, like Facebook,
Google, or LinkedIn, among others.

Microsoft also provides the ability to use its services for
OAuth2 authentication. Microsoft provides OAuth2
authentication through its Azure Active Directory
identity service. On its most basic layer, this is a free
service that you can use if you want your application’s
users to be able to log in using Microsoft Outlook.com
accounts for personal accounts or the Azure Active
Directory accounts for professional accounts.

Before your application can use the Azure Active
Directory service for authenticating your application’s
users, you need to register the application in your Azure
Active Directory tenant. When you are registering your
application, there are some points that you need to
consider before proceeding to the registration:

Supported account types You need to consider whether the
users of your application would be

Users from your organization only Any person that
have an user account in your Azure Active Directory
tenant would be able to use your application.

Users from any organization You use this option
when you want any user with a professional or
educational Azure Active Directory account to be able to
log into your application.

Users from any organization or Microsoft
accounts You use this option if you want your users to
log into your application by using professional,
educational, or any of the freely available Microsoft
accounts.

Platform The OAuth2 authentication is not limited to web
applications. You can also use this type of authentication with
mobile platforms, like iOS or Android, or desktop platforms, like
macOS, Console, IoT, Windows, or UWP.

The following procedure shows how to register a web
application in the Azure Active Directory:

1. Open the Azure portal (https://portal.azure.com),

2. On the Search resources, services, and docs text box on the middle-top
of the Azure Portal, type Azure Active Directory.

3. On the result list, in the Services section, click Azure Active Directory.

4. On the Azure Active Directory page, in the Manage section, click App
Registrations.

5. In the App Registrations blade, click the New Registration button on the
top-left corner of the panel.

6. In the Register An Application blade, type the name of your application
in the Name text box.

7. In the Supported Account Types option control, select Accounts In This
Organizational Directory Only.

8. Click the Register button at the bottom-left corner of the blade.

The previous procedure shows how to make a simple app
registration. Now you need to configure your app
registration according to your app needs. One of the
most critical sets of settings that you need to configure
correctly is the Authentication settings, shown in Figure
3-7. You use the Authentication settings for managing
the authentication options for your application. In this
case, you configure the redirect URLs used by Azure
Active Directory for authenticating your application’s
requests. If the redirect URL provided by your
application doesn’t match with any of the URLs
configured in this section, the authentication fails.

https://portal.azure.com/

Figure 3-7 Authentication settings

The other two critical sets of settings that you need to
consider are Certificates & Secrets and API Permissions.
Certificates & Secrets enables you to manage the
Certificates and the Secrets that your application needs
to use to provide the application’s identity when
requesting a token. You use the API Permissions for
configuring the needed permission for calling other APIs,
either from Microsoft, your organization, or other third-
party APIs. The following example shows how to create a
simple web application that uses Azure Active Directory
authentication. Although you could register the app for
this example directly from the wizard in Visual Studio
2019, we prefer to show you how to make an app
registration directly from the Azure portal. In this
example, you are going to use the app that you registered
in the previous procedure. If you didn’t follow that
procedure, you should review and follow it before you
can proceed with the following example:

1. Open Visual Studio 2019.

2. In the welcome window of Visual Studio 2019, on the Get Started
column, click Create A New Project.

3. On the Create A New Project window, on All Languages drop-down
menu, select C#.

4. In the Search For Templates text box, type asp.net.

5. In the result list, click ASP.NET Web Application (.NET Framework).

6. Click the Next button at the bottom-right corner of the window.

7. On the Configure Your New Project window, type a Project Name, a
Location, and a Solution Name for your project.

8. Click the Create button at the bottom-right corner of the window.

9. In the Create A New ASP.NET Web Application window, select the MVC
template on the template list in the middle of the left side of the
window. MVC is for Model-View-Controller.

10. On the right side of the Create A New ASP.NET Web Application
window, on the Authentication section, ensure the Authentication is set
to No Authentication.

11. Click the Create button at the bottom-right corner of the window.

12. Open the Azure portal (https://portal.azure.com) and navigate to the
app that you registered in the previous example.

13. In the Overview blade of your app in the Azure portal, copy the value of
the parameter Application (client) ID. You need this value for a later
step.

14. In the Manage section on the left side of your App blade, click
Certificates & Secrets.

15. On the Certificates & Secrets blade, in the Client Secrets area, click the
New Client Secret button.

16. Type a description in the text box for this client secret.

17. Click the Add button.

18. In the Client Secrets area, on the list of client secrets, copy the value of
the client secret that you just created. You need this value in a later step.

19. On the Solution Explorer window in your Visual Studio 2019 window,
right-click the Connected Services node.

20. Click Add Connected Service in the contextual menu.

21. In the Connected Services Windows, click Authentication with Azure
Active Directory.

22. In the Configure Azure AD Authentication window, in the Introduction
section, click the Next button at the bottom right of the window.

23. In the Single Sign-On section, in the Domain drop-down menu, type the
name of your tenant. You can find this information in the Azure portal,
in the Overview blade of your Azure Active Directory tenant.

24. On the Configuration Settings area, select Use Settings From An
Existing Azure AD Application To Configure Your Project.

25. In the Client ID text box, paste the value that you copied in step 13.

26. Leave Redirect URI blank.

27. Click the Next button at the bottom right of the window.

28. In the Directory Access section, check the Read Directory Data option.

29. In the Client Secret text box, copy the client secret that you created in
step 18.

30. Click the Finish button.

31. In the Azure AD Authentication window, wait for the wizard to add all
the needed code to your application.

32. In the Solution Explorer, click the name of your project and press F4.

33. In the Properties window, copy the value of the SSL URL setting. You
need this value in a later step.

https://portal.azure.com/

34. Open the Azure portal and navigate to your registered app in your Azure
Active Directory tenant.

35. On your registered app blade, in the Manage section, click
Authentication.

36. On the Authentication blade, in the Platform Configurations area, click
the Add A Platform button.

37. On the Configure Platforms panel, in the Web Applications section,
click Web.

38. On the Redirect URI text box, copy the value of the SSL URL setting
that you copied in step 33.

39. In the Implicit Grant section, check ID Tokens.

40. Click the Configure button.

41. In your Visual Studio 2019 window, press F5 for running your project.

Once you execute the web application, a generic
Microsoft login page should appear in your browser. You
need to provide a valid user account from your tenant to
log in. At this point, your application uses the Azure
Active Directory for authenticating users. Additionally,
you can also read information from your tenant.

When you run the Authentication with the Azure Active
Directory wizard, there are some code changes that you
should understand. The wizard adds some properties to
the appSettings section in the web.config file. These
properties represent relevant settings needed for
connecting to your Azure Active Directory tenant:

ida:ClientId This is the ID representing your registered
application in your Azure Active Directory tenant.

ida:AADInstance Provides the instance that you are going to
use for authentication. In most situations, you use general public
instances. You only need to change this value if your tenant is
hosted in isolated instances like Government, China, or Germany.

ida:Domain This is your Azure Active Directory tenant, where
you registered your app.

ida:TenantId This is the ID representing the tenant where you
registered your app.

ida:PostLogoutRedirectUri This is the URL where Microsoft
redirects the user once the authentication process finished
successfully. This value must match with the value configured in
your app registration in the Azure portal.

ida:ClientSecret The client secret is similar to the password that
your application uses for authenticating against the Azure Active

Directory service before it can interact with the APIs protected by
the identity service.

As with any other authorization system in C#, you need
to add the [Authorized] attribute to any resource that
you want to protect. In this case, the wizard adds this
attribute to any existing controller in your application.
Finally, the most critical piece of code is the one used for
configuring the OpenID/OAuth2 authentication. Listing
3-21 shows the code snippet added to your
Startup.Auth.cs file for connecting your application with
Azure Active Directory.

Listing 3-21 Program.cs extension

Click here to view code image

// C#. ASP.NET.
app.UseOpenIdConnectAuthentication(
 new OpenIdConnectAuthenticationOption
 {
 ClientId = clientId,
 Authority = Authority,
 PostLogoutRedirectUri = postLogou

 Notifications = new OpenIdConnect
 {
 // If there is a code in the
 it for an access token and re
 // away.
 AuthorizationCodeReceived = (
 {
 var code = context.Code;
 ClientCredential credenti

 string signedInUserID = c
 .
 .
 AuthenticationContext aut
 new AuthenticationContext
 new ADALTokenCache(signed
 return authContext.Acquir
 code, new Uri(HttpCont
 .GetLeftPart(UriPartia
 graphResourceId);
 }
 }
 });

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch03_images.xhtml#lis3-21a

Need More Review? Authentication with Azure AD Wizard
If you want to read more about the changes made by the Authentication with Azure AD
wizard, review the article at https://docs.microsoft.com/en-us/azure/active-
directory/develop/vs-active-directory-dotnet-what-happened.

 Exam Tip

When you are registering a new application in
your Azure Active Directory tenant, you need to
consider which will be your target user. If you
need for any user from any Azure Active
Directory organization to be able to log into your
application, you need to configure a multitenant
app. In those multitenant scenarios, the app
registration and management is always
performed in your tenant and not in any other
external tenant.

Control access to resources by using role-based
access controls (RBAC)

When you are working with your Azure subscription,
there are situations where you need to grant access to
other users. These users may need access only to specific
resources inside your subscription, like a specific
resource group or to an Azure SQL Database. You can
achieve this level of granularity by using role-based
access controls (RBAC).

Built on top of the Azure Resource Manager, RBAC
provides fine-grained access control to the different
resources in an Azure subscription. When working with
RBAC, you need to consider the following concepts:

Security principal This is the entity that requests permission
for doing an action. A security principal can be one of the
following:

User This is an individual who has a profile in an Azure
Active Directory tenant. You are not limited to your own

https://docs.microsoft.com/en-us/azure/active-directory/develop/vs-active-directory-dotnet-what-happened

tenant. You can assign a role to users in other tenants as
well.

Group This is a set of users.

Service principal This is like a user for an application.
A service principal represents an application inside the
tenant.

Managed identity This kind of identity represents
cloud applications that need to access resources in your
Azure tenant. Azure automatically manages this kind of
identity.

Permission This is the action that you can perform with a
resource. An example of an action would be requesting a user
delegation key for creating a SAS token. Another example of an
action is listing the content of a container. You cannot directly
assign a role to a security principal. You always need to use a role
or role definition.

Role definition Usually known as just role for short, a role
definition is a collection of permissions. You assign a role to a
security principal. There are a lot of predefined roles in Azure that
you can use for managing access to the resources. There are four
fundamental roles:

Owner Grants full access to all resources in the scope.

Contributor Grants modify access to all resources in
the scope. You can perform all modification operations,
including deleting, with the resources in the scope. You
cannot grant roles to other security principals.

Reader Grants read access to all resources in the scope.

User Access Administrator Useful only for managing
user access to Azure resources.

Aside from these four fundamental built-in roles, there are roles
specific to each service, like Virtual Machine Contributor or
Cosmos DB Account Reader.

Scope This is the group of resources where you assign the role.
You can set a role at four different levels: management group (a
group of subscriptions), subscription, resource group, and
resource. These four levels are organized in a parent-child
relationship where the management group is the highest level and
resource is the lowest. When you assign a role to level, those
permission are inherited by the lower levels. That means that if
you grant the Owner role to a user at the subscription level, that
user has the Owner privileges in all the resource groups and
resources in that subscription.

Role assignment This is the junction between the different
pieces of RBAC. A role assignment connects a security principal
with a role and a scope. Figure 3-8 shows the relationship between
the different RBAC elements.

Figure 3-8 Role-based access control

The following procedure shows how to grant the
Contributor role to a resource group:

1. Open the Azure portal (https://portal.azure.com).

2. In the Search Resources, Services, And Docs text box, type the name of
the resource group where you want to grant the Contributor role.

3. In the result list, click the name of the resource group.

4. On the Resource Group blade, click Access Control (IAM) on the left
side of the control.

5. On the Access Control (IAM) blade, click the Add button on the top-left
corner of the blade.

6. On the contextual menu that appears below the Add button, click Add
Role Assignment.

7. On the Add Role Assignment blade, on the Role drop-down menu,
select Contributor.

8. Leave the Assign Access To drop-down menu set to the default value.

9. In the Select text box, type the name of the user, group, or service
principal that you want to assign the Contributor role.

10. On the result list below the Select text box, click the security principal
that you want to assign the role.

11. Click the Save button on the bottom-left corner of the Add Role
Assignment blade.

Making role assignments to other levels, like
management groups, subscriptions, or resources, is
similar to the previous procedure. In general, you make

https://portal.azure.com/

the RBAC role association in the Access Control (IAM)
section of each level.

Need More Review? Rbac Custom Roles
Although Azure provides a good amount of built-in roles, there could be situations
where the built-in roles don’t have the right privileges for your needs. In those
situations, you can create a custom role. When you define a custom role, you use the
role in the same way as you use a built-in role. You need to create a role definition for
your role by configuring the needed permissions for your custom role. You can find
more information about how to create custom roles by reviewing the article at
https://docs.microsoft.com/en-us/azure/role-based-access-control/custom-roles.

 Exam Tip

When you are assigning specific service roles,
carefully review the permissions granted by the
role. In general, granting access to a resource
doesn’t grant access to the data managed by that
resource. For example, the Storage Account
Contributor grants access for managing Storage
Accounts but doesn’t grant access to the data
itself.

SKILL 3.2: IMPLEMENT SECURE
CLOUD SOLUTIONS

The previous skill reviewed how to protect access to the
data by authenticating and authorizing users who try to
access the information managed in your application. This
protection is only a portion of the mechanisms that you
should put in place for protecting your data. You also
need to ensure that all the configuration needed for
running your application in the different environments is
managed securely. The reason for also securing that
configuration is that configuration has the needed
passwords, certificates, and secrets for accessing the
information managed by your application.

https://docs.microsoft.com/en-us/azure/role-based-access-control/custom-roles

When you encrypt your data, you need to use encryption
and decryption keys or secrets for accessing and
protecting the data. Storing these secrets and encryption
keys is as important as encrypting the data. Losing an
encryption or decryption key is similar to losing your
house’s keys. The Azure Key Vault allows you to securely
store these encryption/decryption keys as well as other
secrets or certificates that your applications may require
in a secured encryption store in Azure. In conjunction
with Managed Identities, the Azure Key Vault services
allow you to securely store your secrets without needing
to store a password, certificate, or any kind of credentials
for accessing your secrets.

This skill covers how to

Secure app configuration data by using the App
Configuration and KeyVault API

Manage keys, secrets, and certificates by using the
KeyVault API

Implement Managed Identities for Azure resource

Secure app configuration data by using the App
Configuration and KeyVault API

Most of today’s medium to large applications are based
on distributed architectures. Independently of whether
the infrastructure that executes your application is based
on virtual machines, containers, serverless computing, or
any other type of computing, you need to share the
configuration between the elements that execute the
same component of your application. For example, if
your application runs on an Internet Information
Services cluster behind a load balancer, all the virtual
machines hosting the IIS service share the same
configuration for running your application.

This kind of scenario is where Azure App Configuration
becomes a handy tool. Azure App Configuration allows

you to store all the necessary configuration for your
cloud application in a single repository. Other Azure
services also allow you to manage configuration for your
apps, but they have some crucial differences that you
should consider:

Azure App Service settings As you know, you can create
settings for your Azure App Service. These settings apply to the
instance that you are configuring. You can even create different
settings values for different deployment slots. On the other hand,
the Azure App Configuration service is a centralized configuration
service that allows you to share the same configuration between
different Azure App Service instances. You also need to consider
that the Azure App Configuration service is not limited to Azure
App Service. You can also use it with containerized applications or
with applications running inside virtual machines.

Azure Key Vault Azure Key Vault allows you to securely store
passwords, secrets, and any other setting that your application
may need. The encryption is performed using hardware-level
encryption, among other interesting features like certificates
rotation or granular access policies. Although Azure App
Configuration encrypts the value of your configuration, Azure Key
Vault still provides higher levels of security. You can use the Azure
Key Vault in conjunction with Azure App Configuration by
creating references in Azure App Configuration to items stored in
the Azure Key Vault.

When you work with Azure App Configuration, you need
to deal with two different components: the App
Configuration store and the SDK. The Azure App
Configuration store is the place where you store your
configuration. When you configure your Azure App
Configuration store, you can choose between two
different pricing tiers: Free and Standard. The main
difference between the two pricing tiers is the number of
stores that you can create in a subscription. In the Free
tier, you are limited to one store per subscription
whereas you don’t have such a limitation in the Standard
tier. Other differences between the two tiers are the
maximum size of the store: 10 MB in the Free tier versus
1 GB in the Standard tier, or the size of the key history: 7
days in the Free tier versus 30 days in the Standard tier.
You can switch from the Free to the Standard tier at any
moment, but you cannot switch back to the Free tier

from the Standard tier. The following procedure shows
how to create an Azure App Configuration:

1. Open the Azure portal (https://portal.azure.com).

2. Click the Create A Resource button in the Azure Services section at the
top of the Azure portal.

3. In the New blade, type app configuration in the Search The
Marketplace text box.

4. In the result list below the text box, click App Configuration.

5. In the App Configuration blade, click the Create button.

6. In the App Configuration blade, type a name for the App Configuration
store in the Resource Name text box. The name must contain only
alphanumeric ASCII characters or the hyphen (-) character, and it must
be between 5 and 50 characters.

7. Select the subscription where you want to deploy your App
Configuration store using the Subscription drop-down menu.

8. In the Resource Group drop-down menu, select the resource group
where you want to deploy your App Configuration store. Alternatively,
you can create a new resource group by clicking the Create New link
below the Resource Group drop-down menu.

9. Select a location in the Location drop-down menu.

10. In the Pricing Tier drop-down menu, select Free.

11. Click the Create button at the bottom of the blade.

Once you have created your Azure App Configuration
store, you can create the key-value pairs for storing your
configuration. Before you create your first key-value pair,
you should review how keys work inside the App
Configuration store.

A key is an identifier associated with a value stored in the
App Configuration store. You use the key for retrieving a
value from the store. Keys are case-sensitive, so
“appSample204” and “APPSAMPLE204” are different
keys. This is important because some languages or
frameworks are case-insensitive for settings, so you
should not use case-sensitivity for differencing keys.
When naming a key, you can use any Unicode character,
except the asterisk (*), the comma (,), and the back slash
(\). If you need to include any of these reserved
characters, you need to prepend the back slash (\) escape
character. As a best practice, you should consider using

https://portal.azure.com/

namespace when naming your keys. By using a separator
character between the different levels, you can create a
hierarchy of settings inside your store. As the Azure App
Configuration service doesn’t analyze or parse your keys,
it is entirely up to you to choose the namespace that
better fits your needs. Some examples of keys using
namespaces are

Click here to view code image

AppSample:Devel:DbConnection
AppSample:AUS:WelcomeMessage

You can also add a label attribute to a key. By default, the
label attribute is null. You can use the label for making
values different using the same key. This is especially
useful when used for deployment environments: The
following three examples are different keys because the
labels are different:

Click here to view code image

Key = AppSample:DBConnection – Label = Develop
Key = AppSample:DBConnection – Label = Stage
Key = AppSample:DBConnection – Label = Production

When creating a new key-value pair, you have a limit of
10,000 for the size of the pair. This limit applies to the
size of the key, plus the size of the optional label, plus the
size of the value. You should also bear in mind that the
same limitations that apply to the string that you use for
the key are the same for value. That is, you can use any
Unicode character for the value, except asterisk (*),
comma (,), and back slash (\). If you need to include any
of these reserved characters, you need to prepend the
back slash (\) escape character.

Need More Review? Feature Management and Dynamic Configuration
You can take advantage of Azure App Configuration for implementing more advanced
features like feature management or dynamic configuration. The following articles give
you more insight about these features:

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch03_images.xhtml#pg177-1a
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch03_images.xhtml#pg177-2a

Feature Management https://docs.microsoft.com/en-us/azure/azure-app-
configuration/quickstart-feature-flag-aspnet-core

Enable Dynamic configuration https://docs.microsoft.com/en-us/azure/azure-
app-configuration/enable-dynamic-configuration-aspnet-core

After you’ve reviewed the basics of the Azure App
Configuration, you can review how to use this service in
your code. The following example is based on the code in
Chapter 2 in the section “Interact with data using the
appropriate SDK.” In this example, you are going to
modify the code for using an Azure App Container store
instead of using an AppSettings JSON file:

1. Open Visual Studio Code and create a folder for your project.

2. In the Visual Studio Code Window, open a new terminal.

3. Use the following command to create a new console project:

dotnet new console

4. Use the following command to install NuGet packages:

Click here to view code image

dotnet add package <NuGet_package_name>

5. Install the following NuGet packages:

1. Azure.Storage.Blobs

2. Azure.Storage.Common

3. Azure.Identity

4. Microsoft.Extensions.Configuration

5. Microsoft.Extensions.Configuration.AzureAppConfiguration

6. Create a C# class file and name it AppSettings.cs.

7. Replace the contents of the AppSettings.cs file with the contents of
Listing 3-22. Change the name of the namespace to match your project’s
name.

8. Create a C# class file and name it Common.cs.

9. Replace the contents of the Common.cs file with the contents of Listing
3-23.

10. Change the name of the namespace to match your project’s name.

11. Replace the contents of the Program.cs file with the contents of
Listing 3-24. Change the name of the namespace to match your project’s
name.

https://docs.microsoft.com/en-us/azure/azure-app-configuration/quickstart-feature-flag-aspnet-core
https://docs.microsoft.com/en-us/azure/azure-app-configuration/enable-dynamic-configuration-aspnet-core
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch03_images.xhtml#pg178a

Listing 3-22 AppSettings.cs

Click here to view code image

Listing 3-23 Common.cs

Click here to view code image

// C#. ASP.NET.
using System;
using Microsoft.Extensions.Configuration;

namespace ch3_2_1
{
 public class AppSettings
 {
 public string SourceSASConnectionString { get
 public string SourceAccountName { get; set; }
 public string SourceContainerName { get; set;
 public string DestinationSASConnectionString
 public string DestinationAccountName { get; s
 public string DestinationContainerName { get;

 public static AppSettings LoadAppSettings()
 {
 var builder = new ConfigurationBuilder();
 builder.AddAzureAppConfiguration(Environm
 ("ConnectionString"));

 var config = builder.Build();
 AppSettings appSettings = new AppSettings
 appSettings.SourceSASConnectionString = c
 S
 appSettings.SourceAccountName = config["T
 AccountNa
 appSettings.SourceContainerName = config[
 Source:
 appSettings.DestinationSASConnectionStrin

 appSettings.DestinationAccountName = conf
 Dest
 appSettings.DestinationContainerName = co
 De
 return appSettings;
 }
 }
}

// C#. ASP.NET.
using Azure.Storage.Blobs;

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch03_images.xhtml#lis3-22a
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch03_images.xhtml#lis3-23a

Listing 3-24 Program.cs

Click here to view code image

namespace ch3_2_1
{
 public class Common
 {

 public static BlobServiceClient CreateBlobCli
 string SASConnectionString)
 {
 BlobServiceClient blobClient;
 try
 {
 blobClient = new BlobServiceClient(SA
 }
 catch (System.Exception)
 {
 throw;
 }

 return blobClient;

 }
 }
}

// C#. ASP.NET.
using System.Threading.Tasks;
using System;
using Azure.Storage.Blobs;

namespace ch3_2_1
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Copy items between Con
 Task.Run(async () => await StartContainer
 }

 public static async Task StartContainersDemo(
 {
 string sourceBlobFileName = "Testing.zip"
 AppSettings appSettings = AppSettings.Loa

 //Get a cloud client for the source Stora
 BlobServiceClient sourceClient = Common.C
 appSettings.SourceSASConnectionString);

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch03_images.xhtml#lis3-24a

Listings 3-23 and 3-24 are mostly the same files that you
can find in the example in Chapter 2 in the section
“Interact with data using the appropriate SDK.” The file
AppSettings.cs shown in Listing 3-22 contains all the
magic for working with the App Configuration service. As
with any regular .NET Core application, you need to
create a ConfigurationBuilder object for managing
the configuration of the application. Once you get your
builder, you use the AddAzureAppConfiguration()
extension method for connecting to the App
Configuration store. Finally, you use the Build()
method from the builder object for loading all the
settings stored in the App Configuration store. Once you
loaded all the settings, you can access each key-value pair
by just using the correct key, as you can see in Listing 3-
24.

At this point, if you try to run this example, you will get
some exceptions because you are not providing the
connection string needed for accessing your Azure App
Configuration store. You neither defined any key-value
pair in your App Configuration store, so even if you were
able to access the store, you would get null values. Use

 //Get a reference for each container
 var sourceContainerReference = sourceClie
 Settings.SourceContainerName);
 var destinationContainerReference = sourc
 appSettings.DestinationContainerName);

 //Get a reference for the source blob
 var sourceBlobReference = sourceContainer
 sourceBlobFileN
 var destinationBlobReference = destinatio
 GetBlobCli

 //Move the blob from the source container
 await destinationBlobReference.StartCopyF

 }
 }
}

the following steps for getting the connection string
needed for accessing the App Configuration store and
define each of the needed key-value pairs:

1. Open the Azure portal (https://portal.azure.com).

2. In the Search Resources, Services, and Docs text box at the top of the
Azure portal, type the name of your App Configuration store.

3. In your App Configuration Store blade, click Access Keys in the Settings
section.

4. In the Access Keys blade, copy one of the connection strings by clicking
the blue icon on the right side next to the Connection String text box.

5. In your Visual Studio Code window, open a new terminal and type the
following command. Replace the text <your_connection_string> with
the value that you copied in step 4:

Click here to view code image

setx ConnectionString "
<your_connection_string>"

6. Restart your Visual Studio Code window. You need to perform this step
to ensure that the environment variable that you defined in the previous
step is available for your code.

7. In the Azure portal, in your App Configuration store blade, click
Configuration Explorer in the Operations section on the left side of the
blade.

8. In the Configuration Explorer, click the Create button at the top-left
corner of the blade.

9. In the Create panel, shown in Figure 3-9, type the name of the key in the
Key text box. Use one of the keys shown in Listing 3-22.

https://portal.azure.com/
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch03_images.xhtml#pg181a

Figure 3-9 Create a new key-value

10. In the Value text box, provide the value for the corresponding key.
Remember that you are using values from the example in Chapter 2 in
the section “Interact with data using the appropriate SDK.” The correct
values are specific to your scenario, but you can use Listing 2-12 for
your reference.

11. Click the Apply button.

12. Repeat steps 8 to 10 until you create a key-value pair for each setting in
Listing 3-22. Here is the complete list for your reference:

1. TestAZ204:StorageAccount:Source:ConnectionString

2. TestAZ204:StorageAccount:Source:AccountName

3. TestAZ204:StorageAccount:Source:ContainerName

4. TestAZ204:StorageAccount:Destination:ConnectionString

5. TestAZ204:StorageAccount:Destination:AccountName

6. TestAZ204:StorageAccount:Destination:ContainerName

13. In your Visual Studio Code window, press F5 for running your project.
At this point, your code should be able to connect to your Azure App
Configuration store and retrieve all the needed settings.

This example shows you the basics for working with
Azure App Configuration but also shows some drawbacks
that you should consider for production environments.

In this example, you defined an environment variable for
storing the connection string for connecting to the App
Configuration store. Although this could be a valid
configuration for testing or developing environments,
there are security implications that you should consider
for production environments. You should consider using
Managed Service Identity for production environments,
instead of using connection strings.

Another security improvement that you should consider
is storing connection strings directly as a key-value in
your App Configuration store. For this kind of sensitive
information, you should store it as a secret in an Azure
Key Vault and create an Azure Key Vault Reference in
your App Configuration store pointing to the right secret.
For the sake of brevity, we didn’t include the procedure
of how to create Key Vault references, but you can review
a complete reference in the article at
https://docs.microsoft.com/en-us/azure/azure-app-
configuration/use-key-vault-references-dotnet-core.

Need More Review? Best Practices
You can review some best practices when working with Azure App Configuration by
reading the article at https://docs.microsoft.com/en-us/azure/azure-app-
configuration/howto-best-practices.

 Exam Tip

When you are defining your key-value pair,
remember that you are limited to a maximum
length of 10,000. Remember also that keys are
case-sensitive, so “AppSetting” and “appsetting”
are treated as different keys.

Manage keys, secrets, and certificates by using the
KeyVault API

Azure Key Vault is the service provided by Microsoft for
securely storing secret keys and certificates in a

https://docs.microsoft.com/en-us/azure/azure-app-configuration/use-key-vault-references-dotnet-core
https://docs.microsoft.com/en-us/azure/azure-app-configuration/howto-best-practices

centralized, secure store. By using Azure Key Vault, your
developers no longer need to store this sensitive
information on their computers while they are
developing an application. Thanks to the identity-based
access control, you only need to configure a policy for
granting access to the needed service or user principals
to the secure store. Another advantage is that you can
apply fine-grained access control, allowing access to
specific secrets only to the needed application or user.

The next example shows how to use the KeyVault API for
creating, reading, updating, or deleting the different
elements that you can store in the Azure Key Vault. You
need an empty Azure App Service and an Azure Key
Vault configured in your Azure subscription to run this
example.

1. Open the Azure portal at https://portal.azure.com.

2. In the search text box on top of the Azure portal, type the name of your
Azure Web App.

3. Click the name of your Azure Web App in the result list below the text
box.

4. On the Azure Web App Service blade, click the Identity menu item in
the Settings section.

5. In the Status switch control, click the On option.

6. Click Save.

7. In the Enable System Assigned Managed Identity dialog box, click Yes.

8. Once you enable the system-assigned managed identity, you get the
Principal or Object ID associated with your Azure App Service.

9. In the search text box at the top of the Azure portal, type the name of
your Azure Key Vault. Click the name of your Azure Key Vault in the
result list.

10. On the Key Vault blade, click Access Policies in the Settings section in
the navigation menu.

11. On the Access Policies blade, click the Add Access Policy link.

12. On the Add Access Policy panel, click the Configure From Template
drop-down menu and select the Key, Secret, and Certificate
Management option.

13. Click Select Principal.

14. On the Principal panel, type the name of your Azure App Service in the
Select text box.

15. In the results list, click the name of your Azure App Service.

https://portal.azure.com/

16. Click the Select button.

17. On the Add Access Policy panel, click the Add button.

18. On the Access Policies blade, click the Save button in the top-left corner
of the blade.

19. Repeat steps 10 through 18 and add the user account that you use for
accessing your Azure subscription. You need to add this policy to be
able to debug your code using Visual Studio. You need to ensure that
you add the policy for granting access to the same user account that you
use accessing your Azure subscription from Visual Studio.

20. Open Visual Studio 2019.

21. In the welcome window of Visual Studio 2019, on the Get Started
column, click Create A New Project.

22. On the Create A New Project window, on the All Languages drop-down
menu, select C#.

23. On the Search For Templates text box type asp.net.

24. On the result list, click ASP.NET Web Application (.NET Framework).

25. Click the Next button at the bottom right of the window.

26. On the Configure Your New Project, type a Project Name, a Location,
and a Solution Name for your project.

27. Click the Create button at the bottom right of the window.

28. On the Create A New ASP.NET Web Application window, select the
MVC template on the template list in the middle of the left side of the
window. MVC is for Model-View-Controller.

29. On the right side of the Create A New ASP.NET Web Application
window, on the Authentication section, ensure the Authentication is set
to No Authentication.

30. Click the Create button at the bottom-right corner of the window.

31. In the Visual Studio window, click Tools > NuGet Package Manager >
Manage NuGet Packages For Solution.

32. On the NuGet Package Manager tab, click Browse.

33. Type Microsoft.Azure.Services.AppAuthentication and press
Enter.

34. Click the Microsoft.Azure.Services.AppAuthentication package.

35. On the right side of the NuGet Manager tab, click the check box next to
your project.

36. Click the Install button.

37. In the Preview Changes window, click OK.

38. In the License Acceptance window, click the I Accept button.

39. Repeat steps 32 through 38 and install the Microsoft.Azure.KeyVault
package.

40. Open the HomeController.cs file in the Controllers folder.

41. Replace the content of the Index() method with the content of Listing
3-25. You may need to add the following namespaces to the
HomeController.cs file:

1. Microsoft.Azure.KeyVault

2. Microsoft.Azure.KeyVault.Models

3. Microsoft.Azure.Services.AppAuthentication

4. System.Threading

5. System.Threading.Tasks

Listing 3-25 Creating, deleting, updating, and reading Key Vault items

Click here to view code image

// C#. ASP.NET.
public ActionResult Index()
 {
 string keyVaultName = "<YOUR_VAULT's_NAME
 string vaultBaseURL = $"https://{keyVault

 //Get a token for accessing the Key Vault
 var azureServiceTokenProvider = new Azure

 //Create a Key Vault client for accessing
 var keyVault = new KeyVaultClient(new Key
 (azureServiceTokenProvider

 // Manage secrets in the Key Vault.
 // Create a new secret
 string secretName = "secret-az204";

 Task.Run(async () => await keyVault.SetSe
 secretName,
 "This is a secret testing value")).Wait(
 var secret = Task.Run(async () => await k
 ($"{vaultBaseURL}/secrets/{secretName}")
 // Update an existing secret
 Task.Run(async () => await keyVault.SetSe
 secretName,
 "Updated the secret testing value")).Wai
 secret = Task.Run(async () => await keyVa
 ($"{vaultBaseURL}/secrets/{secretName
 // Delete the secret
 Task.Run(async () => await keyVault.Delet
 secretName)).Wait();

 // Manage certificates in the Key Vault
 string certName = "cert-az204";
 // Create a new self-signed certificate
 var policy = new CertificatePolicy
 {
 IssuerParameters = new IssuerParamete
 {
 Name = "Self",

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch03_images.xhtml#lis3-25a

 },
 KeyProperties = new KeyProperties
 {
 Exportable = true,
 KeySize = 2048,
 KeyType = "RSA"
 },
 SecretProperties = new SecretProperti
 {
 ContentType = "application/x-pkcs
 },
 X509CertificateProperties = new X509C
 {
 Subject = "CN=AZ204KEYVAULTDEMO"
 }
 };

 Task.Run(async () => await keyVault.Creat
 certName, policy, new CertificateAttribut
 // When you create a new certificate in t
 // before it's ready.
 // We added some wait time here for the s
 Thread.Sleep(10000);
 var certificate = Task.Run(async () => aw
 (vaultBaseURL, certName)).GetAwaiter().G
 // Update properties associated with the
 CertificatePolicy updatePolicy = new Cert
 {
 X509CertificateProperties = new X509C
 {
 SubjectAlternativeNames = new Sub
 {
 DnsNames = new[] { "az204.exa
 }
 }
 };

 Task.Run(async () => await keyVault.Updat
 vaultBaseURL, certNa
 Task.Run(async () => await keyVault.Creat
 certName)).Wait();
 Thread.Sleep(10000);

 certificate = Task.Run(async () => await
 vaultB
 GetAwa

 Task.Run(async () => await keyVault.Updat
 CertificateIde
 new Certificat
 false })).Wait
 Thread.Sleep(10000);

At this point, you should be able to run the example.
Because you didn’t make any modifications to any view,
you should not be able to see any changes in your Azure
Key Vault. To be able to see how this code creates, reads,
modifies, and deletes the different item types in your
Azure Key Vault, you should set some breakpoints:

1. Add a breakpoint to the following lines:

Click here to view code image

string secretName = "secret-az204";
string certName = "cert-az204";
string keyName = "key-az204";

 // Delete the self-signed certificate.
 Task.Run(async () => await keyVault.Delet
 certName)).Wait();

 // Manage keys in the Key Vault
 string keyName = "key-az204";
 NewKeyParameters keyParameters = new NewK
 {
 Kty = "EC",
 CurveName = "SECP256K1",
 KeyOps = new[] { "sign", "verify" }
 };

 Task.Run(async () => await keyVault.Creat
 keyParameters)).Wait
 var key = Task.Run(async () => await keyV
 keyName)).

 // Update keys in the Key Vault
 Task.Run(async () => await keyVault.Updat
 null, new KeyAttribu
 AddYears(1)})).Wait(
 key = Task.Run(async () => await keyVault
 keyName)).GetA

 // Delete keys from the Key Vault
 Task.Run(async () => await keyVault.Delet
 Wait();

 return View();
 }

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch03_images.xhtml#pg188a

2. Open your Azure Key Vault in the Azure Portal, as shown in step 9 of
the previous procedure.

3. On your Azure Key Vault blade, click Secrets in the Settings section in
the navigation menu.

4. In Visual Studio, press F5 to debug your project.

5. When you hit the breakpoint, press F10 and go back to the Azure portal
to see the results. You should use the Refresh button to see the changes
in your Azure Key Vault.

Note Forbidden Access
If you get a Forbidden Access Error while you are debugging your application in Visual
Studio, ensure that you created an Access Policy for the user account that you have
configured in your Visual Studio for connecting with your Azure subscription. You need
to ensure that the Access Policy grants all the needed privileges to the different object
types in the Azure Key Vault. Ensure also that the account that you are using for
developing is correctly authenticated in Azure Active Directory. Check your
development account in Tools > Options > Azure Service Authentication. If there is a
Re-Authenticate link below your development account, click the link to authenticate
again .

When you work with the KeyVault API, you need to
create a KeyVaultClient object that is responsible for
the communication with the Azure Key Vault services. As
described in the example in the “Implement Managed
Service Identity (MSI)/Service Principal authentication”
section, you need to get an access token for
authenticating your service or user principal to the Azure
Key Vault. The following code snippet shows how to
perform this authentication:

Click here to view code image

var azureServiceTokenProvider = new
AzureServiceTokenProvider();
var keyVault = new KeyVaultClient(new
KeyVaultClient.AuthenticationCallback(

azureServiceTokenProvider.KeyVaultTokenCallback));

Now you can use the keyVault variable for working with
the different item types. The KeyVault API provides
specialized methods for each item type. This way, you
should use the SetSecretAsync() method for creating
a new secret in your Azure Key Vault. The following code
snippet shows how to create a new secret:

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch03_images.xhtml#pg189-1a

Click here to view code image

Task.Run(async () => await
keyVault.SetSecretAsync(vaultBaseURL, secretName,
"This is a
secret testing value")).Wait();

If you try to create a new secret, key, or certificate using
the same name of an object that already exists in the
vault, you are creating a new version of that object, as
shown in Figure 3-10. The only exception to this rule is if
you have enabled soft-deletion in your Azure Key Vault,
and you try to create a new secret using the same name
as a deleted object. In that situation, you get a collision
exception. You can click on each version to review the
properties of the object for that version.

Figure 3-10 A secret object with different versions

Most of the methods in the KeyVault API that work with
items require the vault URL and the name of the item
that you want to access. In this example, you define a
variable with the correct value at the beginning of the
Index() method, as shown in the following code
snippet:

Click here to view code image

string keyVaultName = "<YOUR_VAULT's_NAME>";
string vaultBaseURL =
$"https://{keyVaultName}.vault.azure.net";

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch03_images.xhtml#pg189-2a
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch03_images.xhtml#pg189-3a

These methods are usually overloaded for accepting an
object identifier instead of the vault base URL and the
object’s name. The identifier has the following form:

Click here to view code image

https://{keyvault-name}.vault.azure.net/{object-
type}/{object-name}/{object-version}

Where:

Keyvault-name is the name of the key vault where the object is
stored.

Object-type is the type of object that you want to work with. This
value can be secrets, keys, or certificates.

Object-name is the name that you give the object in the vault.

Object-version is the version of the object that you want to access.

Creating a key or certificate uses a slightly different
approach from the one that you used for creating a
secret. Keys and certificates are more complex objects
and require some additional configuration for creating
them. The following code snippet extracted from Listing
3-25 shows how to create a new self-signed certificate in
the Azure Key Vault:

Click here to view code image

// Create a new self-signed certificate
var policy = new CertificatePolicy
{
 IssuerParameters = new IssuerParameters
 {
 Name = "Self",
 },
 KeyProperties = new KeyProperties
 {
 Exportable = true,
 KeySize = 2048,
 KeyType = "RSA"
 },
 SecretProperties = new SecretProperties
 {
 ContentType = "application/x-pkcs12"
 },
 X509CertificateProperties = new

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch03_images.xhtml#pg190-0a
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch03_images.xhtml#pg190-1a

X509CertificateProperties
 {
 Subject = "CN=AZ204KEYVAULTDEMO"
 }
};
Task.Run(async () => await
keyVault.CreateCertificateAsync(vaultBaseURL,
certName,
policy, new CertificateAttributes { Enabled =
true })).Wait();

You need to create a CertificatePolicy object before you
can create the certificate. A certificate policy is an object
that defines the properties of how to create a certificate
and any new version associated with the certificate
object. You use this certificate policy object as a
parameter of the CreateCertificateAsync()
method. If you need to modify any property of an
existing certificate, you need to define a new certificate
policy, update the policy using the
UpdateCertificatePolicyAsync() method, and
create a new certificate version using the
CreateCertificateAsync() method, as shown in
the following code snippet:

Click here to view code image

// Update properties associated with the
certificate.
CertificatePolicy updatePolicy = new
CertificatePolicy
{
 X509CertificateProperties = new
X509CertificateProperties
 {
 SubjectAlternativeNames = new
SubjectAlternativeNames
 {
 DnsNames = new[] {
"az204.examref.testing" }
 }
 }
};
Task.Run(async () => await
keyVault.UpdateCertificatePolicyAsync(vaultBaseURL,
 certName,

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch03_images.xhtml#pg190-2a

updatePolicy)).Wait();
Task.Run(async () => await
keyVault.CreateCertificateAsync(vaultBaseURL,
certName))
 .Wait();

Deleting an object from the key vault is quite
straightforward; you only need to provide the vault base
URL and the object’s name to the
DeleteSecretAsync(),
DeleteCertificateAsync(), or
DeleteKeyAsync() method. Azure Key Vault also
supports soft-delete operations on the protected objects
or the vault itself. This option is enabled by default.
When you soft delete an object or a vault, the Azure Key
Vault provider automatically marks them as deleted but
holds the object or vault for a default period of 90 days.
This means you can recover the deleted object later if
needed.

Need More Review? More Details about Keys, Secrets, and Certificates
You can find more information about the details of the different object types that are
available in the Azure Key Vault service by reviewing the article at
https://docs.microsoft.com/en-us/azure/key-vault/about-keys-secrets-and-certificates.

 Exam Tip

The kind of information that you usually store in
an Azure Key Vault is essential information that
needs to keep secret, like passwords, connection
strings, private keys, and things like that. When
configuring the access to your Key Vault,
carefully review the access level you grant to the
security principal. As a best practice, you should
always apply the principle of least privilege. You
grant access to the different levels in a Key Vault
by creating Access Policies.

Implement Managed Identities for Azure resources

https://docs.microsoft.com/en-us/azure/key-vault/about-keys-secrets-and-certificates

When you are designing your application, you usually
identify the different services or systems on which your
application depends. For example, your application may
need to connect to an Azure SQL database for storing
data or may need to connect to Azure Event Hub for
reading messages from other services. In all these
situations, there is a common need to authenticate with
the service before you can access it. In the Azure SQL
database case, you need to use a connection string; if you
need to connect to an Azure Event Hub, you need to use
a combination of event publishers and Shared Access
Signature (SAS) tokens.

The drawback of this approach is that you need to store a
security credential, token, or password to be able to
authenticate to the service that you want to access. This
is a drawback because you might find that this
information is stored on developers’ computers or is
checked in to the source control by mistake. You can
address most of these situations by using the Azure Key
Vault, but your code still needs to authenticate to Azure
Key Vault to get the information for accessing the other
services.

Fortunately, Azure Active Directory (Azure AD) provides
the Managed Identities for Azure resources (formerly
known as Managed Service Identity) that removes the
need to use credentials for authenticating your
application to any Azure service that supports Azure AD
authentication. This feature automatically creates a
managed identity that you can use for authenticating to
any service that supports Azure AD authentication
without needing to provide any credential.

When you work with managed identities, you can work
with two different types:

System-assigned managed identities These are identities
that Azure automatically enables when you create an Azure service
instance, like an Azure virtual machine (VM) or an Azure data lake

store. Azure creates an identity associated with the new instance
and stores it to the Azure AD tenant associated with the
subscription where you created the service instance. If you decide
to delete the service instance, then Azure automatically deletes the
managed instance associated with the service instance stored in
the Azure AD tenant.

User-assigned managed identities You can create your
managed identities in the Azure AD tenant associated with your
Azure subscription. You can associate this type of managed
identity to one or more service instances. The lifecycle of the
managed identity is independent of the service instance. This
means that if you delete the service instance, the user-assigned
managed identity remains in the Azure AD tenant. You need to
remove the managed identity manually.

Usually, you use the system-assigned managed identities
when your workload is contained within the same Azure
resource, or you need to independently identify each of
the service instances, like Virtual Machines. On the other
hand, if you need to grant access to a workload that is
distributed across different resources or you need to pre-
authorize a resource as part of a provisioning flow, you
should use user-assigned managed identities.

When you work with managed identities, you need to
bear in mind three concepts:

Client ID This is a unique identifier generated by Azure AD. This
ID associates the application and the service principal during its
initial provisioning.

Principal ID This is the ID of the service principal associated
with the managed identity. A service principal and a managed
identity are tightly coupled, but they are different objects. The
service principal is the object that you use to grant role-based
access to an Azure resource.

Azure Instance Metadata Service (IMDS) When you use
managed identities in an Azure VM, you can use the IMDS for
requesting an OAuth Access Token from your application deployed
within the VM. The IMDS is a REST endpoint that you can access
from your VM using a nonroutable IP address (169.254.169.254).

The following example shows how to create a system-
assigned identity in an Azure App Service and how to use
this managed identity from your code for accessing an
Azure Key Vault. For this example, you need to have an

empty Azure App Service, an Azure Key Vault, and at
least one item on the Azure Key Vault. You also need to
have your Visual Studio connected to the Azure
subscription where you have configured the Azure Key
Vault.

1. Open the Azure Portal at https://portal.azure.com.

2. In the search text box at the top of the Azure portal, type the name of
your Azure Web App. If you don’t have an Azure Web App, you can
create a new Azure Web App by using the procedure at
https://docs.microsoft.com/en-in/azure/app-service/app-service-
web-get-started-dotnet.

3. On the Azure Web App Service blade, click the Identity menu item in
the Settings section.

4. On the Status switch control, click the On option.

5. Click the Save button.

6. In the Enable System Assigned Managed Identity dialog box, click the
Yes button.

7. Once you enable the system-assigned managed identity, you get the
Principal or Object ID, as shown in Figure 3-11.

Figure 3-11 System assigned managed identity

8. Open Visual Studio 2019.

9. In the welcome window of Visual Studio 2019, on the Get Started
column, click Create A New Project.

10. On the Create A New Project window, on the drop-down menu, All
Languages drop-down menu, select C#.

11. In the Search For Templates text box type asp.net.

12. In the result list, click ASP.NET Web Application (.NET Framework).

https://portal.azure.com/
https://docs.microsoft.com/en-in/azure/app-service/app-service-web-get-started-dotnet

13. Click the Next button at the bottom right of the window.

14. In the Configure Your New Project, type a Project Name, a Location,
and a Solution Name for your project.

15. Click the Create button at the bottom right of the window.

16. In the Create A New ASP.NET Web Application window, select the MVC
template on the template list in the middle of the left side of the
window. MVC is for Model-View-Controller.

17. On the right side of the Create A New ASP.NET Web Application
window, on the Authentication section, ensure the Authentication is set
to No Authentication.

18. Click the Create button at the bottom right of the window.

19. In the Visual Studio window, click Tools > NuGet Package Manager >
Manage NuGet Packages For Solution.

20. On the NuGet Package Manager tab, click Browse.

21. Type Microsoft.Azure.Services.AppAuthentication and press
Enter.

22. Click the Microsoft.Azure.Services.AppAuthentication package.

23. On the right side of the NuGet Manager tab, click the check box next to
your project.

24. Click the Install button.

25. In the Preview Changes window, click OK.

26. In the License Acceptance window, click the I Accept button.

27. Repeat steps 20 through 26 and install the Microsoft.Azure.KeyVault
package.

28. Open the HomeController.cs file in the Controllers folder.

29. Add the following statements to the HomeController.cs file:

Click here to view code image

using Microsoft.Azure.KeyVault;
using
Microsoft.Azure.Services.AppAuthentication;
using System.Threading.Tasks;

30. Replace the content of the Index() method with the content of Listing 3-
26. The crucial pieces of code related to accessing the Azure Key Vault
are highlighted in bold.

Listing 3-26 Getting a secret from the key vault

Click here to view code image

// C#. ASP.NET.
string keyVaultName = "<PUT_YOUR_KEY_VAULT_NAME_HERE>
string secretName = "<PUT_YOUR_SECRET_NAME_HERE>";

//Get a token for accessing the Key Vault.
var azureServiceTokenProvider = new AzureServiceToken

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch03_images.xhtml#pg194a
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch03_images.xhtml#lis3-26a

As you can see, this code is quite similar to the code in
Listing 3-25. The reason is that you used managed
identities to get access to the Azure Key Vault in the
example in Listing 3-25. Before you can access the Azure
Key Vault, you need to get an OAuth token by using the
AzureServiceTokenProvider class. Then you can create
your Azure Key Vault client and get any item stored in
the vault. When you create the Azure Key Vault client,
make sure you provide the KeyVaultTokenCallback. Even
if you get a valid access token, you still need to grant
access to your Azure App Service application in the Azure
Key Vault.

1. Open the Views > Home > Index.cshtml file.

2. Append the content of Listing 3-27 to the end of the file.

Listing 3-27 Adding secret information to the home page

Click here to view code image

// C#. ASP.NET.
<div class="row">
 <div class="col-lg-12">
 <dl class="dl-horizontal">
 <dt>Key Vault Name: </dt>
 <dd>@ViewBag.keyVaultName</dd>
 <dt>Key Name: </dt>
 <dd>@ViewBag.keyName</dd>
 <dt>Key Secret: </dt>
 <dd>@ViewBag.secret</dd>
 </dl>

//Create a Key Vault client for accessing the items i
var keyVault = new KeyVaultClient(new KeyVaultClient.
 azureServiceTokenProvider.KeyVault

var secret = Task.Run(async () => await keyVault.Get
 $"https://{keyVaultName}.vault.
 .GetAwaiter().GetResult();

ViewBag.KeyVaultName = keyVaultName;
ViewBag.keyName = secretName;
ViewBag.secret = secret.Value;

return View();

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch03_images.xhtml#lis3-27a

 </div>
</div>

At this point, you could run your project and see the
results. Depending on the access policies defined in your
Azure Key Vault, your Azure user may already have
access to the secrets stored in the key vault. In that case,
you should be able to access the secret stored in the
Azure Key Vault. If you get an exception when running
the web application, there are good chances that you
don’t have access to the Azure Key Vault. The following
steps show how to grant access to your Azure App
Service application in the Azure Key Vault.

1. Open the Azure portal (https://portal.azure.com).

2. Type the name of your Azure Key Vault in the search text box at the top
of the Azure portal. If you don’t already have an Azure Key Vault and
need to create a new one, you can use the procedure at
https://docs.microsoft.com/en-us/azure/key-vault/quick-create-
portal.

3. On your Azure Key Vault blade, click Access Policies in the Settings
section.

4. On the Access Policies blade, click Add New.

5. On the Add Access Policy page, select Secret Management in the
Configure From Template drop-down menu.

6. Click the Select Principal control.

7. In the Principal panel, type the name of your Azure App Service in the
Select text box. Your Azure App Service should appear on the list below
the text box.

8. Click your App Service name in the list below the Select text box.

9. Click the Select button at the bottom of the panel.

10. Click the Add button at the bottom of the Add Access Policy blade.

11. Click the Save button at the top of the Access Policies blade.

12. In the Visual Studio window, right-click your project’s name in the
Solution Explorer window.

13. In the contextual menu, click Publish.

14. In the Pick A Publish Target window, ensure that App Service is selected
on the left side of the window.

15. In the Azure App Service section, click Select Existing.

16. Click the Create Profile button at the bottom-right corner of the
window.

https://portal.azure.com/
https://docs.microsoft.com/en-us/azure/key-vault/quick-create-portal

17. In the App Service window, in the tree view at the bottom of the
window, look for your App Service and click it.

18. Click the OK button.

At this point, Visual Studio starts publishing your web
application to the selected Azure App Service. When the
publishing operation finishes, you should be able to see
your web application showing the content of the secret
stored in your Key Vault.

 Exam Tip

You can configure two different types of
managed identities: system- and user-assigned.
System-assigned managed identities are tied to
the service instance. If you delete the service
instance, the system-assigned managed identity
is automatically deleted as well. You can assign
the same user-assigned managed identities to
several service instances.

CHAPTER SUMMARY

Authentication is the act of proving that a user is who he or she
claims to be.

A user authenticates by providing some information that the user
only knows.

There are several mechanisms of authentication that provide
different levels of security.

Some of the authentication mechanisms are form-based, token-
based, or certificate-based.

Using form-based authentication requires your application to
store your users’ passwords.

Form-based authentication requires HTTPS to make the
authentication process more secure.

Using token-based authentication, you can delegate the
authorization to third-party authentication providers.

You can add social logins to your application by using token-based
authentication.

Multifactor authentication is an authentication mechanism that
requires the users to provide more than one piece of information
that only the user knows.

You can easily implement multifactor authentication by using
Azure Active Directory.

There are four main actors in OAuth authentication: client,
resource server, resource owner, and authentication server.

The resource owner needs to authenticate the client before
sending the authorization grant.

The access token grants access to the resource hosted on the
resource server.

The authorization grant or authorization code grants the client the
needed rights to request an access token to the authorization
server.

The client uses the refresh token to get a new access token when it
expires without needing to request a new authorization code.

The JSON web token is the most extended implementation of
OAuth tokens.

Shared Access Signatures (SAS) is an authentication mechanism
for granting access to Azure Storage Accounts without sharing
account keys.

Shared Access Signatures (SAS) tokens must be signed.

There are three types of SAS token: user delegation, account, and
service SAS.

User delegation SAS tokens are signed using a key assigned to an
Azure Active Directory user.

Account and Service SAS are signed using the Azure Storage
account key.

You can hide the details of the SAS tokens from the URL by using
Stored Access Policies.

Shared access signature tokens provide fine-grained access control
to your Azure storage accounts.

You can create an SAS token for service, container, and item
levels.

You need to register applications in Azure Active Directory for
being able to authenticate users using your tenant.

There are three account types supported for authentication:
accounts only in the organizational directory, accounts in any
organizational directory, and Microsoft accounts.

You need to provide a return URL for authenticating your
application when requesting user authentication.

You need to configure a secret or a certificate when your
application needs to access information in other APIs.

Role-Based Access Control (RBAC) authorization provides fine-
grained access control to the resources.

A security principal is an entity to which you can grant privileges.

Security principals are users, groups, service principals, and
managed identities.

A permission is an action that a security principal can make with a
resource.

A role definition, or role, is a group of permissions.

A scope is a level where you can assign a role.

A role association is a relationship between a security principal, a
role, and a scope.

There are four scopes: management groups, subscription, resource
group, and resources.

You can centralize the configuration of your distributed
application using Azure App Configuration.

Azure App Configuration stores the information using key-value
pairs.

Values in the Azure App Configuration are encrypted.

Azure Key Vault provides better security than the Azure App
Configuration service.

The limit of size for an Azure App Configuration is 10,000,
including the key, label, and value.

You can create references from Azure App Configuration items to
Azure Key Vault items.

Azure Key Vault allows you to store three types of objects: keys,
secrets, and certificates.

You should use managed identities authentication for accessing
the Azure Key Vault.

You need to define a certificate policy before creating a certificate
in the Azure Key Vault.

If you import a certificate into the Azure Key Vault, a default
certificate policy is automatically created for you.

THOUGHT EXPERIMENT

In this thought experiment, demonstrate your skills and
knowledge of the topics covered in this chapter. You can
find answers to this thought experiment in the next
section.

You are developing a web application for your company.
The application is in the early stages of development.

This application is an internal application that will be
used only by the employees 199of the company. Your
company uses Office 365 connected with your company’s
Active Directory domain. The application needs to use
information from Office 365. Answer the following
questions about the security implementation of this
application:

1. The employees need to be able to access the
application using the same username and password
they use for accessing Office 365. What should you
do?

2. You are using Azure App Services for developing the
application. You need to ensure that the web
application can access other Azure services without
using credentials in your code. What should you do?

3. You need to ensure that the configuration of your
application is stored in central storage. You also
need to provide the best security for sensitive
information like connection strings and passwords.
What should you do?

THOUGHT EXPERIMENT ANSWERS

This section contains the solution to the thought
experiment. Each answer explains why the answer choice
is correct.

1. You should use OAuth authentication with Azure
Active Directory (Azure AD). If you want your
application to be able to use Azure AD OAuth
authentication, you need to register your application
in your Azure AD tenant. Because your application
needs access to information in Office 365, you also
need to create a client secret before you can access
the Microsoft Graph API. When you connect Office
365 with an Active Directory (AD) domain, users in
the AD domain can authenticate to Office 365 using
the same username and password they use in the AD

domain. Office 365 uses an Azure AD tenant for
managing the identities of the users in the
subscription. Your organization has already
configured the synchronization between AD and
Office 365 and Azure AD. By using OAuth
authentication with Azure AD, your users should be
able to access your application using the same
username and passwords that they use in the AD
domain.

2. You should use the Managed Service Identity (MSI)
authentication. Using the feature, Azure
authenticates services based on a service principal
configured in a service instance. You can use MSI
authentication with services that support Azure AD
authentication, like Azure Key Vault or Azure SQL
Databases. You need to enable a system-assigned or
user-assigned managed identity on your Azure App
Service. Using MSI, the Azure SQL Database
authenticates the identity assigned to your Azure
App Service without needing you to provide any
password.

3. You should create an Azure App Configuration
store. This is the appropriate service for securely
storing your app configuration settings in
centralized storage. Although the Azure App
Configuration store provides secure storage by
encrypting the value of the key-value pairs
representing your settings, you should use Key Vault
references in your Azure App Configuration store for
that sensitive information that requires a higher
level of security. Azure Key Vault uses hardware-
based encryption for storing keys, secrets, and
certificates.

Chapter 4. Monitor,
troubleshoot, and optimize
Azure solutions

Providing a good experience to your users is one of the
key factors for the success of your application. Several
factors affect the user’s experience, such as a good user
interface design, ease of use, good performance, and low
failure rate. You can ensure that your application will
perform well by assigning more resources to your
application, but if there are not enough users using your
application, you might be wasting resources and money.

To ensure that your application is working correctly, you
need to deploy a monitoring mechanism that helps you
to get information about your application’s behavior.
This is especially important during peak usage periods or
failures. Azure provides several tools that help you to
monitor, troubleshoot, and improve the performance of
your application.

Skills covered in this chapter:

Skill 4.1: Integrate caching and content delivery within solutions

Skill 4.2: Instrument solutions to support monitoring and logging

SKILL 4.1: INTEGRATE CACHING AND
CONTENT DELIVERY WITHIN
SOLUTIONS

Any web application that you implement delivers two
types of content—dynamic and static.

Dynamic content is the type of content that changes depending on
user interaction. An example of dynamic content is a dashboard

with several graphs or a list of user movements in a banking
application.

Static content is the same for all application users. Images and
PDFs are examples of static content (as long as they are not
dynamically generated) that users can download from your
application.

If the users of your application access it from several
locations across the globe, you can improve the
performance of the application by delivering the content
from the location nearest to the user. For static content,
you can improve the performance by copying the content
to different cache servers distributed across the globe.
Using this technique, users can retrieve the static content
from the nearest location with lower latency, which
improves the performance of your application.

For dynamic content, you can use cache software to store
the most accessed data. This means your application
returns the information from the cache, which is faster
than reprocessing the data or getting it from the storage
system.

This skill covers how to

Develop code to implement CDNs in solutions

Configure cache and expiration policies for FrontDoor,
CDNs, and Redis caches

Store and retrieve data in Azure Redis Cache

Develop code to implement CDNs in solutions

A Content Delivery Network (CDN) is a group of servers
distributed in different locations across the globe that
can deliver web content to users. Because the CDN has
servers distributed in several locations, when a user
makes a request to the CDN, the CDN delivers the
content from the nearest server to the user.

The main advantage of using Azure CDN with your
application is that Azure CDN caches your application’s
static content. When a user makes a request to your
application, the CDN stores the static content, such as
images, documents, and stylesheet files. When a second
user from the same location as the first user accesses
your application, the CDN delivers the cached content,
relieving your web server from delivering the static
content. You can use third-party CDN solutions such as
Verizon or Akamai with Azure CDN.

To use Azure CDN with your solution, you need to
configure a profile. This profile contains the list of
endpoints in your application that would be included in
the CDN. The profile also configures the behavior of
content delivery and access of each configured endpoint.
When you configure an Azure CDN profile, you need to
choose between using Microsoft’s CDN or using CDNs
from Verizon or Akamai.

You can configure as many profiles as you need for
grouping your endpoints based on different criteria, such
as internet domain, web application, or any other
criteria. Bear in mind that Azure CDN pricing tiers are
applied at the profile level, so you can configure different
profiles with different pricing characteristics. As with any
CDN solution in the real world, you need a web
application to run the procedures and demonstrations
throughout this skill. The following procedure shows
how to create a basic web application in Visual Studio
and publish it in an Azure Web App. You can use this
Azure Web App in all the examples in the rest of this
skill:

1. Open Visual Studio 2019 on your computer.

2. In the Visual Studio 2019 home window, in the column named Get
Started, click the Continue Without Code link at the bottom of the
column.

3. Click the Tools menu and choose Get Tools And Features. Verify that
the ASP.NET And Web Development In The Web & Cloud section is
checked.

4. In the Visual Studio 2019 window, select File > New > Project to open
the New Project window.

5. In the Create a New Project window, select C# in the drop-down menu
below the Search For Templates text box at the top right of the window.

6. In the All Project Types drop-down menu, select Web.

7. In the list of templates on the right side of the window, select ASP.NET
Core Web Application.

8. In the Configure Your New Project window, complete the following
steps:

1. Select a name for the project.

2. Enter a path for the location of the solution.

3. In the Solution drop-down menu, select Create A New Solution.

4. Enter a name for the solution.

9. Click the Create button in the bottom-right corner of the Configure Your
New Project window. This opens the Create A New ASP.NET Core Web
Application window.

10. In the Create A New ASP.NET Core Web Application window, ensure
that the following values are selected in the two drop-down menus at
the top of the window:

1. .NET Core

2. ASP.NET Core 3.1

11. Select Web Application from the Project Templates area in the center of
the window.

12. Uncheck the Configure For HTTPS option at the bottom right of the
window.

13. Click the Create button in the bottom-right corner of the Create A New
ASP.NET Core Web Application window.

14. On the right side of the Visual Studio window, in the Solution Explorer
window, right-click the project’s name.

15. In the contextual menu, click Publish. This opens the Pick A Publish
Target window.

16. In the Pick A Publish Target window, make sure that App Service is
selected from the list of Available Targets on the left side of the window.

17. In the Azure App Service section, on the right side of the window,
ensure that Create New Option is selected.

18. In the bottom-right corner of the window, click the Create Profile
button, which opens the Create App Service window.

19. In the Create App Service window, add a new Azure account. This
account needs to have enough privileges in the subscription for creating
new resource groups, app services, and an App Service plan.

20. Once you have added a valid account, you can configure the settings for
publishing your web application.

21. In the App Name text box, enter a name for the App Service. By default,
this name matches the name that you gave to your project.

22. In the Subscription drop-down menu, select the subscription in which
you want to create the App Service.

23. In the Resource Group drop-down menu, select the resource group in
which you want to create the App Service and the App Service plan. If
you need to create a new resource group, you can do so by clicking the
New link on the right side of the drop-down menu.

24. To the right of the Hosting Plan drop-down menu, click the New link to
open the Configure Hosting Plan window.

25. In the Configure Hosting Plan window, type a name for the App Service
plan in the App Service Plan text box.

26. Select a region from the Location drop-down menu.

27. Select a virtual machine size from the Size drop-down menu.

28. Click the OK button in the bottom-right corner of the window. This
closes the Configure Hosting Plan window.

29. At the bottom-right corner of the Create App Service window, click the
Create button. This starts the creation of the needed resources and the
upload of the code to the App Service.

30. Once the publishing process has finished, Visual Studio opens your
default web browser with the URL of the newly deployed App Service.
This URL will have the structure
https://<your_app_service_name>.azurewebsites.net.

Once you have created your testing Azure Web App, you
can use the URL that you got on step 30 in the previous
procedure with the rest of the procedures in this skill.
The following procedure shows how to create an Azure
CDN profile with one endpoint for caching content from
a web application:

1. Open the Azure portal (https://portal.azure.com).

2. Click the Create A Resource button in the Azure Services section.

3. On the New blade, in the Search The Marketplace text box, type CDN.

4. In the result list, click CDN.

5. On the CDN blade, click the Create button.

6. On the CDN profile blade, type a Name for the profile.

7. Select an existing Resource Group in the drop-down menu.
Alternatively, you can create a new resource group by clicking the
Create New link below the Resource Group drop-down menu.

8. In the Pricing Tier drop-down menu, select Standard Microsoft.

9. Click the Create button at the bottom of the CDN profile blade.

10. In the Search text box at the top of the Azure portal, type the name for
your CDN profile.

11. In the result list, click the name of your CDN profile.

https://portal.azure.com/

12. On the CDN profile blade, shown in Figure 4-1, click the Endpoint
button.

Figure 4-1 CDN profile blade

13. In the Add An Endpoint panel, type a Name for the endpoint. Bear in
mind that this name needs to be globally unique.

14. In the Origin Type drop-down menu, select Web App.

15. In the Origin Hostname drop-down menu, select the name of your web
application.

16. In the Origin Path text box, type the path to the application you need to
include in the CDN.

17. Leave the Origin Host header value as is. The Origin Host header value
should match the Origin Hostname value.

18. Leave the other options as is they are.

19. Click the Add button.

The propagation of the content through the CDN
depends on the type of CDN that you configured. For
Standard Microsoft CDN, the propagation usually
completes in 10 minutes. Once the propagation of the
CDN completes, you can access your web application by
using the endpoint that you configured in the previous
procedure:
https://<your_endpoint’s_name>.azureedge.net.

Once you have configured the endpoint, you can apply
some advanced options to adjust the CDN to your needs:

Custom DNS domain By default, when using the CDN, your
users access your application by using the URL
https://<your_endpoint’s_name>.azureedge.net. This URL
would not be appropriate for your application. You can assign
more appropriate DNS domains to the CDN endpoint, such as

https://app.contoso.com, which allows your users to access your
web application using a URL related to your business and your
DNS domain name.

Compression You can configure the CDN endpoint to compress
some MIME types. This compression is made on the fly by the
CDN when the content is delivered from the cache. Compressing
the content allows you to deliver smaller files, improving the
overall performance of the application.

Caching rules You can control how the content is stored in the
cache by setting different rules for different paths or content types.
By configuring a cache rule, you can modify the cache expiration
time, depending on the conditions you configure. Caching rules
are only available for profiles from Verizon’s Azure CDN Standard
and Akamai’s Azure CDN Standard.

Geo-filtering You can block or allow a web application’s content
to specific countries across the globe.

Optimization You can configure the CDN for optimizing the
delivery of different types of content. Depending on the type of
profile, you can optimize your endpoint for

General web delivery

Dynamic site acceleration

General media streaming

Video-on-demand media streaming

Large file downloads

Note Dynamic Site Acceleration
Although Dynamic Site Acceleration is part of the features provided by the Azure CDN,
this is not strictly a cache solution. If you need to use Dynamic Site Acceleration with
Microsoft Azure services, you should use Azure Front Door Service instead of Azure
CDN .

If you need to dynamically create new CDN profiles and
endpoints, Microsoft provides the Azure CDN Library for
.NET and Azure CDN Library for Node.js. Using these
libraries, you can automate most of the operations
reviewed in this section.

Need More Review? How Caching Works
Caching web content involves working with HTTP headers, setting the appropriate
expiration times, or deciding which files should be included in the cache. You can
review the details of how caching works by reading the article at
https://docs.microsoft.com/en-us/azure/cdn/cdn-how-caching-works.

https://app.contoso.com/
https://docs.microsoft.com/en-us/azure/cdn/cdn-how-caching-works

 Exam Tip

Content Delivery Networks (CDN) are
appropriate for caching static content that
changes infrequently. Although Azure CDN from
Akamai and Azure CDN from Verizon include
Dynamic Site Acceleration (DSA), this feature is
not the same as a cache system. You should not
confuse Azure CDN DSA optimization with
Azure CDN cache.

Configure cache and expiration policies for
FrontDoor, CDNs, and Redis caches

When you work with cached content, you need to control
the lifetime or validity of that content. Although static
content usually has a low rate of change, this kind of
content can change. For example, if you are caching the
logo of your company and the logo is changed, your users
won’t see the change in the application until the new logo
is loaded in the cache. In this scenario, you can simply
purge or remove the old logo from the cache, and the
new image will be loaded into the cache as soon as the
first user accesses the application.

This mechanism of manually purging the cache could be
appropriate for a very specific scenario. Still, in general
terms, you should consider using an automatic
mechanism for having the freshest content in your cache
system. When you add content to a CDN cache, the
system automatically assigns a TimeToLive (TTL) value
to the content file instead of continuously comparing the
file in the cache with the original content on the web
server. The cache system checks whether the TTL is
lower than the current time. If the TTL is lower than the
current time, the CDN considers the content to be fresh
and keeps the content in the cache. If the TTL expires,
the CDN marks the content as stale or invalid. When the

next user tries to access the invalid content file, the CDN
compares the cached file with the content in the web
server. If both files match, the CDN updates the version
of the cached file and makes the file valid again by
resetting the expiration time. If the files in the cache and
the web server don’t match, the CDN removes the file
from the cache and updates the content with the freshest
content file on the web server.

The cached content can become invalid by deleting the
content from the cache or by reaching the expiration
time. You can configure the default TTL associated with a
site by using the Cache-Control HTTP Header. You set
the value for this header in different ways:

Default CDN configuration If you don’t configure any value for
the TTL, the Azure CDN automatically configures a default value
of seven days.

Caching rules You can configure TTL values globally or by using
custom matching rules. Global caching rules affect all content in
the CDN. Custom caching rules control the TTL for different paths
or files in your web application. You can even disable the caching
for some parts of your web application.

Web.config files You use the web.config file to set the expiration
time of the folder. You can even configure web.config files for
different folders by setting different TTL values. Use the following
XML code to set the TTL:

Click here to view code image

<configuration>
 <system.webServer>
 <staticContent>
 <clientCache
cacheControlMode="UseMaxAge"
cacheControlMaxAge=
 "3.00:00:00" />
 </staticContent>
 </system.webServer>
</configuration>

Programmatically If you work with ASP.NET, you can control
the CDN caching behavior by setting the HttpResponse.Cache
property. You can use the following code to set the expiration time
of the content to five hours:

Click here to view code image

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch04_images.xhtml#pg207a
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch04_images.xhtml#pg208a

// Set the caching parameters.
Response.Cache.SetExpires(DateTime.Now.AddHours(5));

Response.Cache.SetCacheability(HttpCacheability.Public);

Response.Cache.SetLastModified(DateTime.Now);

Use the following procedure to create caching rules in
your Azure CDN. Bear in mind that you can configure
caching rules only for Azure CDN for Verizon and Azure
CDN for Akamai profiles:

1. Open the Azure portal (https://portal.azure.com).

2. Click the Create A Resource button.

3. On the New blade, in the Search The Marketplace text box, type CDN.

4. In the result list, click CDN.

5. On the CDN blade, click the Create button.

6. On the CDN profile blade, type a Name for the profile.

7. Select an existing Resource Group from the drop-down menu.
Alternatively, you can create a new resource group by clicking the
Create New link below the Resource Group drop-down menu.

8. On the Pricing Tier drop-down menu, select Standard Akamai.

9. Check the Create A New CDN Endpoint Now check box.

10. Type a name for the endpoint in the CDN Endpoint Name text box.
Beware that this name cannot be the same as the CDN Profile name.

11. In the Origin Type drop-down menu, select Web App.

12. In the Origin Hostname drop-down menu, select the name of your web
application.

13. Click the Create button at the bottom of the CDN Profile blade.

14. In the Search text box at the top of the Azure portal, type the name of
your CDN profile.

15. In the result list, click your CDN profile’s name.

16. On the Overview panel, on the CDN profile blade, in the Endpoints list,
click the existing endpoint.

17. On the Endpoint blade, click Caching Rules in the Settings section of the
navigation menu.

18. On the Caching Rules panel, shown in Figure 4-2, set the Caching
Behavior drop-down menu to Override in the Global Caching Rules
section.

https://portal.azure.com/

Figure 4-2 Configuring Caching Rules

19. Set the Cache Expiration Duration to 15 days.

20. On the Custom Caching Rules list, create a new custom rule. Set the
Match Condition drop-down menu to File Extension(s).

21. In the Match Value(s) text box, type png.

22. In the Caching Behavior drop-down menu, select Override.

23. In the Days column, type 4.

24. In the top-left corner of the panel, click the Save button.

When you work with Azure Cache for Redis, you can also
set the TTL for the different values stored in the in-
memory database. If you don’t set a TTL for the
key/value pair, the entry in the cache won’t expire. When
you create a new entry in the in-memory database, you
set the TTL value as a parameter of the StringSet()
method. The following code snippet shows how to set a
TTL of 5 hours to a String value:

Click here to view code image

_cache.StringSet(key, Serialize(value), new
TimeSpan(5, 0, 0));

Apart from invalidating the content of the cache by the
expiration of the content, you can manually invalidate
the content by removing it directly from the CDN or
Redis Cache. You can remove a key from the Azure Cache
for Redis in-memory database. You can use the following
methods:

KeyDelete() method Use this method for removing a single key
from the database. You need to use this method with a database
instance.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch04_images.xhtml#pg209a

FlushAllDatabases() method Use this method to remove all
keys from all databases in the Azure Cache for Redis.

For Azure CDN, you can invalidate part or the entire
content of the CDN profile by using the Purge option
available in the Azure portal. Use the following
procedure for purging content from your Azure CDN
profile:

1. Open the Azure portal (https://portal.azure.com).

2. In the Search text box at the top of the Azure portal, type the name of
your CDN profile.

3. On the Overview panel, in your CDN profile blade, click the Purge
button.

4. On the Purge panel, shown in Figure 4-3, select the Endpoint you want
to purge from the drop-down menu control.

Figure 4-3 Purging content from the cache

5. In the Content Path text box, type the path that you want to purge from
the cache. If you want to purge all the content from the cache, you need
to check the Purge All check box.

Note Purge All and Wildcards in Azure CDN for Akamai
At the time of this writing, the Purge All and Wildcard options are not available for
Akamai CDNs.

Azure CDN is not the only service that Microsoft
provides for caching content. The Azure Front Door
service allows you to route the traffic efficiently to the
closest location to the user. As part of the features
offered by the Azure Front Door service, it also allows

https://portal.azure.com/

you to cache content by providing a CDN. As with Azure
CDN, you can configure the cache and expiration time
for the elements in the cache.

The cache configuration is performed at routing rule
level. Using the Azure Front Door service, you can route
the traffic for different paths in your URL to different
back-end pools hosting your application. A routing rule
defines each of these routes. With this structure in mind,
you can configure caching for some parts of your
application, whereas others remain uncached. The
following procedure shows how to enable caching in a
routing rule. This procedure assumes that you have
already deployed an Azure Front Door. Because we didn’t
review how to work with Azure Front Door previously in
this chapter, you can deploy a demo Front Door by using
the quick start guide at https://docs.microsoft.com/en-
us/azure/frontdoor/quickstart-create-front-door.

1. Open the Azure portal (https://portal.azure.com).

2. In the Search Resources, Services, And Docs text box, type the name of
your Azure Front Door instance.

3. Click the name of your Azure Front Door instance in the result list.

4. In your Azure Front Door blade, click Front Door Designer in the
Settings section on the navigation menu on the left side of the blade.

5. On the Front Door Designer blade, click one of the routing rules inside
the green rectangle with the title Routing Rules.

6. On the Update Routing Rule panel, scroll down to the bottom of the
panel.

7. Change the Caching switch control from Disabled to Enabled.

8. In the cache settings shown in Figure 4-4, change the value of Cache
Duration from 0 Days to 4 Days.

https://docs.microsoft.com/en-us/azure/frontdoor/quickstart-create-front-door
https://portal.azure.com/

Figure 4-4 Configuring Azure Front Door cache

9. Click the Update button.

10. Click the Save button on the top-left corner of the Front Door Designer
blade.

You can also control the cache expiration of an individual
item by setting the appropriate cache headers. The
following HTTP headers control the cache and expiration
of an item in the Azure Front Door cache:

Cache-Control: max-age Expressed in seconds, this header
controls how long the item is valid in the cache. For example, if
you set this value to 3600, the item can be used up to 60 minutes
before the Azure Front Door service makes a request to the back-
end pool for a fresh version of the item.

Cache-Control: s-maxage Expressed in seconds, this directive
is similar to the previous one but is meaningful only on CDN
environments. This directive has precedence over max-age and
expires directives.

Expires Expressed using an HTTP-date timestamp, this directive
sets the datetime until the item is valid in the cache. The max-age
and s-maxage directives take precedence over this directive.

Purging the content of the cache is as simple as in the
Azure CDN services. The following steps show how to
purge the content of your Azure Front Door:

1. Open the Azure portal (https://portal.azure.com).

2. In the Search Resources, Services, And Docs text box, type the name of
your Azure Front Door instance.

3. Click the name of your Azure Front Door instance in the result list.

4. In your Azure Front Door blade, click Front Door Designer in the
Settings section on the navigation menu on the left side of the blade.

https://portal.azure.com/

5. On the Front Door Designer blade, click the Purge button on the top left
side of the blade.

6. On the Purge panel, mark the Purge All check box. Alternatively, if you
want to purge only part of the cached content, type the path of the
content that you want to purge in the Content Path text box below the
Purge All check box.

7. Click the Purge button at the bottom of the panel.

Need More Review? Azure Front Door Caching
Azure Front Door is an advanced routing and caching system. This service allows you
to cache big files and compress data on the fly. You can review more details about how
Azure Front Door caching works by reading the article at https://docs.microsoft.com/en-
us/azure/frontdoor/front-door-caching.

Store and retrieve data in Azure Redis Cache

Redis is an open-source cache system that allows you to
work like in an in-memory data structure store, database
cache, or message broker. The Azure Redis Cache or
Azure Cache for Redis is a Redis implementation
managed by Microsoft. Azure Redis Cache has three
pricing layers that provide you with different levels of
features:

Basic This is the tier with the fewest features and less throughput
and higher latency. You should use this tier only for development
or testing purposes. There is no Service Level Agreement (SLA)
associated with the Basic tier.

Standard This tier offers a two-node, primary-secondary
replicated Redis cache that is managed by Microsoft. This tier has
associated a high-availability SLA of 99.9 percent.

Premium This is an enterprise-grade Redis cluster managed by
Microsoft. This tier offers the complete group of features with the
highest throughput and lower latencies. The Redis cluster is also
deployed on more powerful hardware. This tier has a high-
availability SLA of 99.9 percent.

Note Scaling the Azure Redis Cache Service
You can scale up your existing Azure Redis cache service to a higher tier, but you
cannot scale down your current tier to a lower one .

When you are working with Azure Cache for Redis, you
can use different implementation patterns that solve
different issues, depending on the architecture of your
application:

https://docs.microsoft.com/en-us/azure/frontdoor/front-door-caching

Cache-Aside In most situations, your application stores the data
that it manages in a database. Accessing data in a database is a
relatively slow operation because it depends on the time to access
the disk storage system. A solution would be to load the database
in memory, but this approach is costly; in most cases, the database
simply doesn’t fit on the available memory. One solution to
improve the performance of your application in these scenarios is
to store the most-accessed data in the cache. When the back-end
system changes the data in the database, the same system can also
update the data in the cache, which makes the change available to
all clients.

Content caching Most web applications use web page templates
that use common elements, such as headers, footers, toolbars,
menus, stylesheets, images, and so on. These template elements
are static elements (or at least don’t change often). Storing these
elements in Azure Cache for Redis relieves your web servers from
serving these elements and improves the time your servers need to
generate dynamic content.

User session caching This pattern is a good idea if your
application needs to register too much information about the user
history or data that you need to associate with cookies. Storing too
much information in a session cookie hurts the performance of
your application. You can save part of that information in your
database and store a pointer or index in the session cookie that
points that user to the information in the database. If you use an
in-memory database, such as Azure Cache for Redis, instead of a
traditional database, your application benefits from the faster
access times to the data stored in memory.

Job and message queuing You can use Azure Cache for Redis
to implement a distributed queue that executes long-lasting tasks
that may negatively affect the performance of your application.

Distributed transactions A transaction is a group of
commands that need to complete or fail together. Any transaction
needs to ensure that the data is always in a stable state. If your
application needs to execute transactions, you can use Azure
Cache for Redis for implementing these transactions.

You can work with Azure Cache for Redis using different
languages, such as ASP.NET, .NET, .NET Core, Node.js,
Java, or Python. Before you can add caching features to
your code using Azure Redis Cache, you need to create
your Azure Cache for Redis database using the following
procedure:

1. Open the Azure portal (https://portal.azure.com).

2. Click Create A Resource in the Azure Services section.

3. On the New blade, click Databases on the navigation menu on the left
side of the blade.

https://portal.azure.com/

4. In the list of Database services, shown in Figure 4-5, click the Azure
Cache For Redis item.

Figure 4-5 Creating a new Azure Cache for Redis resource

5. On the New Redis Cache blade, type a DNS Name for your Redis
resource.

6. Select the Subscription, Resource Group, and Location from the
appropriate drop-down menu that best fits your needs.

7. In the Pricing tier drop-down menu, select the Basic C0 tier.

8. Click the Create button at the bottom of the New Redis Cache blade.

The deployment of your new Azure Cache for Redis takes
a few minutes to complete. Once the deployment is
complete, you need to get the access keys for your
instance of the Azure Cache for Redis. You use this
information in your code to connect the Redis service in
Azure.

If you are using any of the .NET languages, you can use
the StackExchange.Redis client for accessing your Azure
Cache for Redis resource. You can also use this Redis
client for accessing other Redis implementations. When
reading or writing values in the Azure Cache for Redis,
you need to create a ConnectionMultiplexer object.
This object creates a connection to your Redis server.
The ConnectionMultiplexer class is designed to be
reused as much as possible.

For this reason, you should store this object and reuse it
across all your code, whenever it is possible to reuse.
Creating a connection is a costly operation. For this
reason, you should not create a
ConnectionMultiplexer object for each read or write
operation to the Redis cache. Once you have created your
ConnectionMultiplexer object, you can use any of
the available operations in the StackExchange.Redis
package. Following are the basic operations that you can
use with Redis:

Use Redis as a database You get a database from Redis, using
the GetDatabase() method, for writing and reading values from
the database. You use the StringSet() or StringGet()
methods for writing and reading.

Use Redis as a messaging queue You get a subscriber object
from the Redis client, using the GetSubscriber() method.
Then you can publish messages to a queue, using the Publish()
method, and read messages from a queue, using the
Subscribe() method. Queues in Redis are known as “channels.”

The following procedure shows how to connect to an
Azure Cache for Redis database and read and write data
to and from the database using an ASP.NET application:

1. Open Visual Studio 2019.

2. In the welcome window of Visual Studio 2019, on the Get Started
column, click Create A New Project.

3. On the Create A New Project window, on the All Languages drop-down
menu, select C#.

4. In the Search For Templates text box type asp.net.

5. In the result list, click ASP.NET Web Application (.NET Framework).

6. Click the Next button at the bottom right of the window.

7. On the Configure Your New Project, type a Project Name, a Location,
and a Solution Name for your project.

8. Click the Create button at the bottom right of the window.

9. In the Create A New ASP.NET Web Application window, select the MVC
template on the template list in the middle left side of the window. MVC
is for Model-View-Controller.

10. On the right side of the Create A New ASP.NET Web Application
window, in the Authentication section, ensure the Authentication is set
to No Authentication.

11. Click the Create button at the bottom-right corner of the window.

12. In the Visual Studio window, select Tools > NuGet Package Manager >
Manage NuGet Packages For Solution.

13. On the NuGet Package Manager tab, click Browse.

14. Type StackExchange.Redis and press Enter.

15. Click the StackExchange.Redis package.

16. On the right side of the NuGet Manager tab, click the check box next to
your project.

17. Click the Install button.

18. In the Preview Changes window, click OK.

19. In the License Acceptance window, click the I Accept button.

20. Open the Azure portal (https://portal.azure.com).

21. In the search text box in the top-middle of the portal, type the name of
your Azure Cache for Redis that you created in the previous example.

22. Click your Azure Cache for Redis in the results list.

23. On the Azure Cache for Redis blade, click Access Keys in the Settings
section in the navigation menu on the left side of the blade.

24. On the Access Keys blade, copy the value of the Primary Connection
String (StackExchange.Redis). You need this value on the next steps.

25. In the Visual Studio window, open the Web.config file.

26. In the <appSettings> section, add the following code:

Click here to view code image

<add key="CacheConnection " value="
<value_copied_in_step_24>"/>

Note Security Best Practice
In real-world development, you should avoid putting connection strings and secrets
on files that could be checked with the rest of your code. To avoid this, you can put
the <appSettings> section with the keys containing the sensible secrets or
connection strings in a separate file outside the source code control folder. Then
add the file parameter to the <appSettings> tag pointing to the external
appSettings file path. You can also use the Azure App Configuration in
conjunction with the Azure Key Vault for storing your connection strings.

27. Open the HomeController.cs file in the Controllers folder.

28. Add the following using statements to the HomeController.cs file:

using System.Configuration;
using StackExchange.Redis;

29. Add the code in Listing 4-1 to the HomeController class.

Listing 4-1 HomeController RedisCache method

Click here to view code image

https://portal.azure.com/
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch04_images.xhtml#pg215a
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch04_images.xhtml#lis4-1a

30. In the Solution Explorer, right-click Views > Home folder and select
Add > View on the contextual menu.

31. In the Add View window, type RedisCache for the View Name.

// C#. ASP.NET.
public ActionResult RedisCache()
{
 ViewBag.Message = "A simple example with Azure

 var lazyConnection = new Lazy<ConnectionMultip
{

 string cacheConnection = ConfigurationManager.
 .
 return ConnectionMultiplexer.Connect(cacheConn
});
 // You need to create a ConnectionMultiplexer
 // cache.
 // Then you can get an instance of a database.
 IDatabase cache = lazyConnection.Value.GetData

 // Perform cache operations using the cache ob

 // Run a simple Redis command
 ViewBag.command1 = "PING";
 ViewBag.command1Result = cache.Execute(ViewBag

 // Simple get and put of integral data types i
 ViewBag.command2 = "GET Message";
 ViewBag.command2Result = cache.StringGet("Mess

 // Write a new value to the database.
 ViewBag.command3 = "SET Message \"Hello! The c
 ViewBag.command3Result = cache.StringSet("Mess

 // Get the message that we wrote on the previo
 ViewBag.command4 = "GET Message";
 ViewBag.command4Result = cache.StringGet("Mess

 // Get the client list, useful to see if the c
 ViewBag.command5 = "CLIENT LIST";

 ViewBag.command5Result = cache.Execute("CLIENT

 lazyConnection.Value.Dispose();

 return View();

}

32. Click the Add button.

33. Open the RedisCache.cshtml file.

34. Replace the content of the RedisCache.cshtml file with the content of
Listing 4-2.

Listing 4-2 RedisCache View

Click here to view code image

35. Press F5 to run your project locally.

36. In the web browser running your project, append the
/Home/RedisCache URI to the URL. Your result should look like Figure
4-6.

// C#. ASP.NET.
@{
 ViewBag.Title = "Azure Cache for Redis Test";
}

<h2>@ViewBag.Title.</h2>
<h3>@ViewBag.Message</h3>

<table border="1" cellpadding="10">
 <tr>
 <th>Command</th>
 <th>Result</th>
 </tr>
 <tr>
 <td>@ViewBag.command1</td>
 <td><pre>@ViewBag.command1Result</pre></td
 </tr>
 <tr>
 <td>@ViewBag.command2</td>
 <td><pre>@ViewBag.command2Result</pre></td
 </tr>
 <tr>
 <td>@ViewBag.command3</td>
 <td><pre>@ViewBag.command3Result</pre></td
 </tr>
 <tr>
 <td>@ViewBag.command4</td>
 <td><pre>@ViewBag.command4Result</pre></td
 </tr>
 <tr>
 <td>@ViewBag.command5</td>
 <td><pre>@ViewBag.command5Result</pre></td
 </tr>
</table>

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch04_images.xhtml#lis4-2a

Figure 4-6 Example results

 Exam Tip

You can use Azure Cache for Redis for static
content and the most-accessed dynamic data.
You can use it for in-memory databases or
message queues using a
publication/subscription pattern.

Need More Review? More Details About Redis
You can review features, patterns, and transactions of the Redis cache system by
reading the following articles:

https://stackexchange.github.io/StackExchange.Redis/Basics

https://stackexchange.github.io/StackExchange.Redis/Transactions

https://stackexchange.github.io/StackExchange.Redis/KeysValues

SKILL 4.2: INSTRUMENT SOLUTIONS
TO SUPPORT MONITORING AND
LOGGING

Knowing how your application behaves during regular
operation is essential, especially for production

https://stackexchange.github.io/StackExchange.Redis/Basics
https://stackexchange.github.io/StackExchange.Redis/Transactions
https://stackexchange.github.io/StackExchange.Redis/KeysValues

environments. You need to get information about the
number of users, resource consumption, transactions,
and other metrics that can help you to troubleshoot your
application if an error happens. Adding custom metrics
to your application is also important when creating alerts
that warn you when your application is not behaving as
expected.

Azure provides features for monitoring the consumption
of resources assigned to your application. Also, you can
monitor the transactions and any other metrics that you
may need, which allows you to fully understand how
your application behaves under conditions that are
usually difficult to simulate or test. You can also use
these metrics for efficiently creating autoscale rules to
improve the performance of your application.

This skill covers how to

Configure instrumentation in an app or service by using
Application Insights

Analyze log data and troubleshoot solutions by using Azure
Monitor

Implement Application Insights Web Test and Alerts

Implement code that handles transient fault

Configure instrumentation in an app or service by
using Application Insights

Microsoft provides you with the ability to monitor your
application while it is running by using Application
Insights. This tool integrates with your code, allowing
you to monitor what is happening inside your code while
it is executing in a cloud, on-premises, or hybrid
environment. You can also enable Application Insights
for applications that are already deployed in Azure
without modifying the already deployed code.

By adding a small instrumentation package, you can
measure several aspects of your application. These

measures, known as telemetry, are automatically sent to
the Application Insight component deployed in Azure.
Based on the information sent from the telemetry
streams from your application to the Azure portal, you
can analyze your application’s performance and create
alerts and dashboards, which help you better understand
how your application is behaving. Although Application
Insights needs to be deployed in the Azure portal, your
application can be executed in Azure, in other public
clouds, or in your on-premises infrastructure. When you
deploy the Application Insights instrumentation in your
application, it monitors the following points:

Request rates, response times, and failure rates You can
view which pages your users request more frequently, distributed
across time. You may find that your users tend to visit specific
pages at the beginning of the day, whereas other pages are more
visited at the end of the day. You can also monitor the time that
your server takes for delivering the requested page or even if there
were failures when delivering the page. You should monitor the
failure rates and response times to ensure that your application is
performing correctly and your users have a pleasant experience.

Dependency rates, response times, and failure rates If
your application depends on external services (such as Azure
Storage Accounts), Google or Twitter security services for
authenticating your users, or any other external service, you can
monitor how these external services are performing and how they
are affecting your application.

Exceptions The instrumentation keeps track of the exceptions
raised by servers and browsers while your application is executing.
You can review the details of the stack trace for each exception via
the Azure portal. You can also view statistics about exceptions that
arise during your application’s execution.

Page views and load performance Measuring the
performance of your server’s page delivery is only part of the
equation. Using Application Insights, you can also get information
about the page views and load performance reported from the
browser’s side.

AJAX calls This measures the time taken by AJAX calls made
from your application’s web pages. It also measures the failure
rates and response time.

User and session counts You can keep track of the number of
users who are connected to your application. Just as the same user
can initiate multiple sessions, you can track the number of
sessions connected to your application. This allows you to clearly
measure the threshold of concurrent users supported by your
application.

Performance counters You can get information about the
performance counters of the server machine (CPU, memory, and
network usage) from which your code is executing.

Hosts diagnostics Hosts diagnostics can get information from
your application if it is deployed in a Docker or Azure
environment.

Diagnostic trace logs Trace log messages can be used to
correlate trace events with the requests made to the application by
your users.

Custom events and metrics Although the out-of-the-box
instrumentation offered by Application Insights offers much
information, some metrics are too specific to your application to
be generalized and included in the general telemetry. For those
cases, you can create custom metrics to monitor your server and
client code. This allows you to monitor user actions, such as
shopping cart checkouts or game scoring.

Application Insights are not limited to .NET languages.
There are instrumentation libraries available for other
languages, such as Java, JavaScript, or Node.js. There
are also libraries available for other platforms like
Android or iOS. You can use the following procedure to
add Application Insight instrumentation to your
ASP.NET application. To run this example, you need to
meet these prerequisites:

An Azure Subscription.

Visual Studio 2017/2019. If you don’t have Visual Studio, you can
download the Community edition for free from
https://visualstudio.microsoft.com/free-developer-offers/.

Install the following workloads in Visual Studio:

ASP.NET and web development, including the optional
components.

Azure development.

In this example, you are going to create a new MVC
application from a template and then add the
Application Insights instrumentation. You can use the
same procedure to add instrumentation to any of your
existing ASP.NET applications:

1. Open Visual Studio 2019.

https://visualstudio.microsoft.com/free-developer-offers/

2. In the home window in Visual Studio, click the Create A New Project
button in the section Get Started on the right side of the window.

3. In the Create A New Project window, in the Search box, type MVC.

4. Select the ASP.NET Web Application (.NET Framework) template.

5. Click the Next button in the bottom-right corner of the window.

6. Type a name for your project and solution in the Project Name and
Solution Name boxes, respectively.

7. Select the Location where your project will be stored.

8. Click the Create button at the bottom-right corner of the window.

9. On the Create A New ASP.NET Web Application window, select the
MVC template.

10. Click the Create button at the bottom-right corner of the window.

11. In the Solution Explorer window, right-click the name of your project.

12. In the contextual menu, shown in Figure 4-7, select Add > Application
Insights Telemetry.

Figure 4-7 Adding Application Insights Telemetry

13. On the Application Insights Configuration page, click the Get Started
button at the bottom of the page.

14. On the Register Your App With Application Insights page, ensure that
the correct Azure Account and Azure Subscription are selected in the
drop-down menus.

15. Click the Configure Settings link below the Resource drop-down menu.

16. In the Application Insights Configuration dialog box, select the
Resource Group and Location where you want to create the new
Application Insight resource.

17. Click the Register button.

18. On the Application Insights Configuration tab, click the Collect Traces
From System.Diagnostics button at the bottom of the tab. Enabling this
option allows you to send a log message directly to Application Insights.

At this point, Visual Studio starts adding the needed
packages and dependencies to your project. Visual
Studio also automatically configures the Instrumentation
Key, which allows your application to connect to the
Application Insights resource created in Azure. Now your
project is connected with the instance of the Application
Insights deployed in Azure. As soon as you run your
project, the Application Insights instrumentation starts
sending information to Azure. You can review this
information in the Azure portal or your Visual Studio.
Use the following steps to access Application Insights
from Visual Studio and Azure portal:

1. From the Visual Studio window, in the Solution Explorer window,
navigate to your project’s name and select Connected Services >
Application Insights.

2. Right-click Application Insights.

3. On the contextual menu, click Search Live Telemetry. The Application
Insights Search tab appears in Visual Studio.

4. In the Solution Explorer, right-click Application Insights to open the
Azure Portal Application Insights from Visual Studio.

5. On the contextual menu, click Open Application Insights Portal.

Apart from the standard metrics that come out of the box
with the default Application Insights instrumentation,
you can also add your custom events and metrics to your
code. Using custom events and metrics, you can analyze
and troubleshoot logic and workflows that are specific to
your application. The following example shows how to
modify the MVC application that you created on the
previous example for adding custom events and metrics:

1. Open the project that you created in the previous example.

2. Open the HomeController.cs file.

3. Add the following using statements at the beginning of the file:

Click here to view code image

using Microsoft.ApplicationInsights;
using System.Diagnostics;

4. Replace the content of the HomeController class in the
HomeController.cs file with the content in Listing 4-3.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch04_images.xhtml#pg223a

Listing 4-3 HomeController class

Click here to view code image

// C#. ASP.NET.
public class HomeController : Controller
 {
 private TelemetryClient telemetry;
 private double indexLoadCounter;

 public HomeController()
 {
 //Create a TelemetryClient that can be
 // Controller.
 telemetry = new TelemetryClient();

 //Initialize some counters for the cus
 //This is a fake metric just for demo
 indexLoadCounter = new Random().Next(1
 }

 public ActionResult Index()
 {
 //This example is trivial as Applicati
 // load of the page.
 //You can use this example for trackin
 // application.
 telemetry.TrackEvent("Loading the Inde
 //Before you can submit a custom metri
 //method.
 telemetry.GetMetric("CountOfIndexPageL

 //This trivial example shows how to tr
 //Insights.
 //You can also send trace message to A
 try
 {
 Trace.TraceInformation("Raising a
 throw new System.Exception(@"Trivi
 Exception feature in Application I
 }
 catch (System.Exception ex)
 {
 Trace.TraceError("Capturing and ma
 telemetry.TrackException(ex);
 }

 //You need to instruct the TelemetryCl
 // the ApplicationInsights.
 telemetry.Flush();
 return View();
 }

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch04_images.xhtml#lis4-3a

5. In the Solution Explorer, open the ApplicationInsights.config file.

6. In the <Add
Type="Microsoft.ApplicationInsights.Extensibility.Per

fCounterCollector.PerformanceCollectorModule,

Microsoft.AI.PerfCounterCollector"> XML item, add the
following child XML item:

Click here to view code image

<EnableIISExpressPerformanceCounters>true</EnableIISExpressPerformanceCounters>

Note Controllers Constructors
In the previous example, we used a private property in the constructor for creating and
initializing a TelemetryClient object. In a real-world application, you should use
dependency injection techniques for properly initializing the Controller class. There are
several frameworks, like Unity, Autofac, or Ninject, that can help you in implementing
the dependency injection pattern in your code .

At this point, you can press F5 and run your project to
see how your application is sending information to
Application Insights. If you review the Application

 public ActionResult About()
 {
 ViewBag.Message = "Your application de

 //This example is trivial as Applicati
 //load of the page.
 //You can use this example for trackin
 // application.
 telemetry.TrackEvent("Loading the Abou

 return View();
 }

 public ActionResult Contact()
 {
 ViewBag.Message = "Your contact page."
 //This example is trivial as Applicati
 //of the page.
 //You can use this example for trackin
 // application.
 telemetry.TrackEvent("Loading the Cont

 return View();
 }
 }

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch04_images.xhtml#pg225a

Insights Search tab, you can see the messages, shown in
Figure 4-8, that your application is sending to
Application Insights.

Figure 4-8 Application Insights messages

You send messages to Application Insights by using the
TelemetryClass class. This class provides you with
the appropriate methods for sending the different types
of messages to Application Insights. You can send
custom events by using the TrackEvent() method. You
use this method for tracking meaningful events to your
application, such as when the user creates a new
shopping cart in an eCommerce web application or the
user wins a game in a mobile app.

If you need to keep track of the value of certain variables
or properties in your code, you can use the combination
of GetMetric() and TrackValue() methods. The
GetMetric() method retrieves a metric from the
azure.applicationinsight namespace. If the metric doesn’t
exist on the namespace, the Application Insights library
automatically creates a new one. Once you have a
reference to the correct metric, you can use the
TrackValue() method to add a value to that metric.
You can use these custom metrics for setting alerts or
autoscale rules. Use the following steps for viewing the
custom metrics in the Azure portal:

1. From the Visual Studio window, in the Solution Explorer window,
navigate to your project’s name and select Connected Services >
Application Insights.

2. Right-click Application Insights.

3. In the contextual menu, click Open Application Insights Portal.

4. On the Application Insights blade, click Metrics in the Monitoring
section of the navigation menu on the left side of the blade.

5. On the Metrics blade, on the toolbar above the empty graph, on the
Metric Namespace drop-down menu, select azure.applicationsight.

6. On the Metric drop-down menu, select CountOfIndexPageLoad. This is
the custom metric that you defined in the previous example.

7. On the Aggregation drop-down menu, select Count. The values for your
graph will be different but should look similar to Figure 4-9.

Figure 4-9 Custom metric graph

You can also send log messages to Application Insights
by using the integration between System.Diagnostics and
Application Insights. Any message sent to the diagnostics
system using the Trace class appears in Application
Insights as a Trace message. In this same line, use the
TraceException() method for sending the stack trace
and the exception to Application Insights. The advantage
of doing this is that you can easily correlate exceptions
with the operations that were performing your code
when the exception happened.

 Exam Tip

Remember that Application Insights is a
solution for monitoring the behavior of an
application on different platforms, written in
different languages. You can use Application
Insights with web applications and native
applications or mobile applications written in
.NET, Java, JavaScript, or Node.js. There is no
requirement to run your application in Azure.
You only need to use Azure for deploying the
Application Insights resource that you use for
analyzing the information sent by your
application.

Need More Review? Creating Custom Events and Metrics
You can create more complex metrics and events than the one that we reviewed here.
For complex operations, you can track all the actions inside an operation for correctly
correlating all the messages generated during the execution of the operation. You can
learn more about how to create custom events and metrics by reading the article at
https://docs.microsoft.com/en-us/azure/azure-monitor/app/api-custom-events-metrics.

Analyze log data and troubleshoot solutions by
using Azure Monitor

Azure Monitor is a tool composed of several elements
that help you monitor and better understand the
behavior of your solutions. Application Insights is a tool
for collecting information from your solutions. Once you
have the collected information, you can use the Analyze
tools for reviewing the data and troubleshooting your
application. Depending on the information that you need
to analyze, you can use Metric Analytics or Log Analytics.

You can use Metric Analytics for reviewing the standard
and custom metrics sent from your application. A metric
is a numeric value that is related to some aspect at a
particular point in time of your solution. CPU usage, free
memory, and the number of requests are all examples of
metrics; also, you can create your own custom metrics.

https://docs.microsoft.com/en-us/azure/azure-monitor/app/api-custom-events-metrics

Because metrics are lightweight, you can use them to
monitor scenarios in near real-time. You analyze metric
data by representing the values of the metrics in a time
interval using different types of graphs. Use the following
steps for reviewing graphs:

1. Open the Azure portal (https://portal.azure.com).

2. On the Search Resources, Services, And Docs text box on the top side of
the Azure portal, type monitor.

3. Click Monitor in the Services section in the result list.

4. On the Monitor blade, click Metrics on the navigation menu on the left
side of the blade.

5. On the Metrics blade, the Select A Scope panel should appear
automatically.

6. On the Select A Scope panel, in the scope tree, select the subscription or
resource groups that contain the Azure App Service containing the
metrics you want to add to the graph.

7. In the Resource Type drop-down menu, below the scope tree, select
only the App Services resource type.

8. In the App Service drop-down, select one of your App Services.

9. Click the Apply button at the bottom of the panel.

10. On the Metrics blade, select the Average Response Time metric in the
Metric drop-down menu.

11. Click the Add Metric button at the top of the graph. You can add several
metrics to the same graph, which means you can analyze different
metrics that are related between them.

12. Repeat step 10 for adding the Connections metric. Figure 4-10 shows
the metrics added to the graph.

https://portal.azure.com/

Figure 4-10 Configuring metrics for a graph

You use Log Analytics for analyzing the trace, logs,
events, exceptions, and any other message sent from
your application. Log messages are more complex than
metrics because they can contain much more
information than a simple numeric value. You can
analyze log messages by using queries for retrieving,
consolidating, and analyzing the collected data. Log
Analytics for Azure Monitor uses a version of the Kusto
query language. You can construct your queries to get
information from the data stored in Azure Monitor. To
do so, complete the following steps:

1. Open the Azure portal (https://portal.azure.com).

2. In the Search Resources, Services, And Docs text box at the top of the
Azure portal, type monitor.

3. Click Monitor in the Services section in the result list.

https://portal.azure.com/

4. On the Monitor blade, click Logs in the navigation menu on the left side
of the blade.

5. On the Logs blade, click the Get Started button.

6. On the Logs blade, the Select A Scope panel should appear
automatically.

7. On the Select A Scope panel, in the scope tree, navigate to the resources
containing the logs you want to query. Click the check box next to the
resource. You can select only resources of the same type. For this
example, the resource type should be Application Insights.

8. Click the Apply button at the bottom of the panel.

9. On the Logs blade, type traces in the text area.

10. Click the Run button.

11. You can review the result of your query in the section below the query
text area.

This simple query returns all the traces error events
stored in your Application Insights workspace. You can
use more complex queries to get more information about
your solution. The available fields for the queries depend
on the data loaded in the workspace. The data schema
manages these fields. Figure 4-11 shows the schema
associated with a workplace that stores data from
Application Insights.

Figure 4-11 Workspace schema

Once you get the results from a query, you can easily
refine the results of the query by adding where clauses to
the query. The easiest way to add new filtering criteria is
to expand one of the records in the table view in the
results section below the query text area. If you move
your mouse over each of the fields in a record, you can
see three small dots before the field of the record. If you
click the three dots icon, a contextual menu appears for
including or excluding the value of the field in the where
clause. Based on the example in the previous section, the
following query would get all traces sent from the
application except those with the message Raising a
trivial exception.

Click here to view code image

traces | where message <> "Raising a trivial
exception"

You can review the results of this query in both table and
chart formats. Using the different visualization formats,
you can get a different insight into the data. Figure 4-12
shows how the results from the previous query are
plotted into a pie chart.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch04_images.xhtml#pg229a

Figure 4-12 Rendering query results

Need More Review? Creating Log Queries
Creating the appropriate query for your needs greatly depends on the details of your
solution. You can review the details about the Kusto query language and how to create
complex queries by reviewing the following articles:

Kusto Query Language: https://docs.microsoft.com/en-us/azure/kusto/query/

Azure Monitor log queries: https://docs.microsoft.com/en-us/azure/azure-
monitor/log-query/query-language

 Exam Tip

When you try to query logs from the Azure
Monitor, remember that you need to enable the
diagnostics logs for the Azure App Services. If
you get the message, We didn’t find any logs
when you try to query the logs for your Azure
App Service, that could mean that you need to
configure the diagnostic settings in your App
Service.

Implement Application Insights Web Test and
Alerts

As a result of analyzing the data sent from your
application to the Azure Monitor using Application
Insights, you may find some situations that you need to
monitor more carefully. Using Azure Monitor, you can
set alerts based on the value of different metrics or logs.
For example, you can create an alert to receive a
notification when your application generates an HTTP
return code 502.

You can also configure Application Insights for
monitoring the availability of your web application. You
can configure different types of tests for checking the
availability of your web application:

URL ping test This is a simple test for checking whether your
application is available by making a request to a single URL for

https://docs.microsoft.com/en-us/azure/kusto/query/
https://docs.microsoft.com/en-us/azure/azure-monitor/log-query/query-language

your application.

Multi-step web test Using Visual Studio Enterprise, you can
record the steps that you want to use as the verification for your
application. You use this type of test for checking complex
scenarios. The process of recording the steps in a web application
generates a file with the recorded steps. Using this generated file,
you can create a web test in Application Insights; then you upload
the recording file.

Custom Track Availability Test You can create your own
availability test in your code using the TrackAvailability()
method.

When creating a URL ping test, you can check not only
the HTTP response code but also the content returned by
the server. This way, you can minimize the possibility of
false positives. These false positives can happen if the
server returns a valid HTTP response code, but the
content is different due to configuration errors. Use the
following procedure for creating an URL ping test on
your Application Insights that checks the availability of
your web application:

1. Open the Azure portal (https://portal.azure.com).

2. In the Search Resources, Services, And Docs text box at the top of the
Azure portal, type monitor.

3. Click Monitor in the Services section in the result list.

4. On the Monitor blade, click Applications in the Insights section.

5. On the Applications blade, click the name of the Application Insights
resource where you want to configure the alert.

6. On the Applications Insights blade, click Availability in the Investigate
section of the navigation menu on the left side of the blade.

7. On the Availability blade, click Add Test at the top left of the blade.

8. On the Create Test blade, shown in Figure 4-13, type a name for the test
in the Test Name text box.

https://portal.azure.com/

Figure 4-13 Creating a URL test

9. Ensure that URL Ping Test is selected in the Test Type drop-down
menu.

10. In the URL text box, type the URL of the application you want to test.

11. Expand the Test Location section. Select the locations from which you
want to perform the URL ping test.

12. Leave the other options as they are.

13. Click the Create button at the bottom of the panel.

When you configure the URL ping test, you cannot
configure the Alert directly during the creation process.
You need to finish the creation of the test, and then you
can edit the Alert for defining the actions that you want
to perform when the alert fires. Use the following
procedure for configuring an alert associated with the
URL ping test that you configured previously:

1. On the Availability blade, click the ellipsis beside the newly created
alert.

2. In the contextual menu, click Open Rules (Alerts) Page.

3. On your alert Rules Management blade, in the Condition section,
ensure that there is a default condition with the name whenever the

average failed locations is greater than or equal to 2 count.

4. On the Action Group section, click the Select Action Group link.

5. On the Configured Actions panel, click the Create Action Group button.

6. On the Select An Action Group To Attach To This Alert Rule panel, click
Create Action Group.

7. On the Create Action Group panel, select a resource group to save this
action group. Alternatively, you can create a new resource group by
clicking the Create New link below the Resource Group drop-down
menu.

8. Type a name in the Action Group Name text box. This name needs to be
unique in the resource group that you selected in the previous step.

9. Click the Next: Notifications button at the bottom of the panel.

10. In the Notifications section, in the Notification Type drop-down menu,
select Email/SMS Message/Push/Voice.

11. On the Email/SMS/Push/Voice panel, select the Email check box.

12. Type an email address in the text box below the Email check box.

13. Click the OK button at the bottom of the panel.

14. Type a name in the Name text box, next to the Notification Type drop-
down menu.

15. Click the Next: Actions at the bottom of the panel.

16. Leave the Actions section as is. You can use this section for configuring
actions like calling an Azure Function, creating a ticket in an ITSM
system, or start an Azure Automation Runbook.

17. Click the Review & Create button.

18. Click the Create button.

19. On your alert Rules Management blade, ensure that the newly created
Action Group has been correctly added to the list of Action Groups
attached to the alert.

20. Click the Save button on the top-left corner of your alert Rules
Management blade.

Now you can test whether the URL ping test is working
correctly by temporarily shutting down your testing
application. After five minutes, you should receive an
email message at the email address you configured in the
alert action associated with the URL ping test.

 Exam Tip

Remember that you need a Visual Studio
Enterprise license for creating multistep web
tests. You use the Visual Studio Enterprise for

the definition of the steps that are part of the
test, and then you upload the test definition to
Azure Application Insights.

Need More Review? Azure Monitor Alerts
Apart from creating alerts when a web test fails, you can also create alerts based on
other conditions that depend on the events information stored in the Application
Insights. You can review the details about how to create these alerts by reviewing the
article at https://docs.microsoft.com/en-us/azure/azure-monitor/platform/alerts-log.

Implement code that handles transient faults

Developing applications for the cloud means that your
application depends on the resources in the cloud to run
your code. As we already reviewed in previous chapters,
these resources provide out-of-the-box high availability
and fault-tolerant features that make your application
more resilient. Azure Cloud Services use redundant
hardware and load balancers. Although you are
guaranteed not to suffer big breakdowns, there can be
situations that can temporarily affect your application,
such as performing automatic failovers or load balancing
operations. Usually, recovery from that kind of transient
situation is as simple as retrying the operation your
application was performing. For example, if your
application was reading a record from a database and
you get a timeout error because of a temporary overload
of the database, you can retry the read operation to get
the needed information.

Dealing with these transient faults leads you to deal with
some interesting challenges. Your application needs to
respond to these challenges to ensure that it offers a
reliable experience to your users. These challenges are

Detect and classify faults Not all the faults that may happen
during the application execution are transient. Your application
needs to identify whether the fault is transient, long-lasting, or a
terminal failure. Even the term “long-lasting failure” is dependent
on the logic of your application because the amount of time that
you consider “long-lasting” depends on the type of operations your
application performs. Your application also needs to deal with the
different responses that come from different services types. An

https://docs.microsoft.com/en-us/azure/azure-monitor/platform/alerts-log

error occurring while reading data from a storage system is
different from an error occurring while writing data.

Retry the operation when appropriate Once your
application determines that it’s dealing with a transient fault, the
application needs to retry the operation. It also needs to keep track
of the number of retries of the faulting operation.

Implement an appropriate retry strategy Indefinitely
retrying the operation could lead to other problems, such as
performance degradation or blocking the resources that your
application is using. To avoid those performance problems, your
application needs to set a retry strategy that defines the number of
retries, sets the delay between each retry, and sets the actions that
your application should take after a failed attempt. Setting the
correct number of retries and the delay between them is a complex
task that depends on factors such as the type of resources, the
operating conditions, and the application itself.

You can use the following guidelines when implementing
a suitable transient fault mechanism in your application:

Use existing built-in retry mechanism When working with
SDKs for specific services, the SDK usually provides a built-in
retry mechanism. Before thinking of implementing your retry
mechanism, you should review the SDK that you are using to
access the services on which your application depends and use the
built-in retry mechanism. These built-in retry mechanisms are
tailored to the specific features and requirements of the target
service. If you still need to implement your retry mechanism for a
service—such as a storage service or a service bus—you should
carefully review the requirements of each service to ensure that
you correctly manage the faulting responses.

Determine whether the operation is suitable for retrying
When an error is raised, it usually indicates the nature of the error.
You can use this information to determine whether the error is a
transient fault. Once you determine your application is dealing
with a transient fault, you need to determine whether retrying the
operation can succeed. You should not retry operations that
indicate an invalid operation, such as a service that suffered a fatal
error or continuing to look for an item after receiving an error
indicating the item does not exist in the database. You should
implement operation retries if the following conditions are met:

You can determine the full effect of the operation.

You fully understand the conditions of the retry.

You can validate these conditions.

Use the appropriate retry count and interval Setting the
wrong retry count could lead your application to fail or could lock
resources that can affect the health of the application. If you set

the retry count too low, your application may not have enough
time to recover from the transient fault and will fail. If you set the
retry count to a value that is too high or too short, you can lock
resources that your application is using, such as threads,
connections, or memory. This high-resource consumption can
affect the health of your application. When choosing the
appropriate retry count and interval, you need to consider the type
of operation that suffered the transient fault. For example, if the
transient fault happens during an operation that is part of user
interaction, you should use a short retry interval and count, which
avoids having your user wait too long for your application to
recover from the transient fault. On the other hand, if the fault
happens during an operation that is part of a critical workflow,
setting a longer retry count and interval makes sense if restarting
the workflow is time-consuming or expensive. Following are some
of the most common strategies for choosing the retry interval:

Exponential back-off You use a short time interval for
the first retry, and then you exponentially increase the
interval time for subsequent retries. For example, you set
the initial interval to 3 seconds and then use 9, 27, 81 for
the subsequent retries.

Incremental intervals You set a short time interval
for the first retry, then you incrementally increase the
interval time for the subsequent retries. For example,
you set the initial interval to 3 seconds and then use 5, 8,
13, 21 for the subsequent retries.

Regular intervals You use the same time interval for
each retry. This strategy is not appropriate in most cases.
You should avoid using this strategy when accessing
services or resources in Azure. In those cases, you should
use the exponential back-off strategy with a circuit
breaker pattern.

Immediate retry You retry as soon as the transient
fault happens. You should not use this type of retry more
than once. The immediate retries are suitable for peak
faults, such as network package collisions or spikes in
hardware components. If the immediate retry doesn’t
recover from the transient fault, you should switch to
another retry strategy.

Randomization If your application executes several
retries in parallel—regardless of the retry strategy—using
the same retry values for all the retries can negatively
affect your application. In general, you should use
random starting retry interval values with any of the
previous strategies. This allows you to minimize the
probability that two different application threads start
the retry mechanism at the same time in the event of a
transient fault.

Avoid anti-patterns When implementing your retry
mechanism, there are some patterns you should avoid:

Avoid implementing duplicated layers of retries. If your
operation is made of several requests to several services,
you should avoid implementing retries on every stage of
the operation.

Never implement endless retry mechanisms. If your
application never stops retrying in the event of a
transient fault, the application can cause resource
exhaustion or connection throttling. You should use the
circuit breaker pattern or a finite number of retries.

Never use immediate retry more than once.

Test the retry strategy and implementation Because of the
difficulties when selecting the correct retry count and interval
values, you should thoroughly test your retry strategy and
implementation. You should pay special attention to heavy load
and high-concurrency scenarios. You should test this by injecting
transient and nontransient faults into your application.

Manage retry policy configuration When you are
implementing your retry mechanism, you should not hardcode the
values for the retry count and intervals. Instead, you can define a
retry policy that contains the retry count and interval as well as the
mechanism that determines whether a fault is transient or
nontransient. You should store this retry policy in configuration
files so that you can fine-tune the policy. You should also
implement this retry policy configuration so that your application
stores the values in memory instead of continuously rereading the
configuration file. If you are using Azure App Service, you should
consider using the service configuration shown in Figure 4-14.

Figure 4-14 Azure App Service application settings

Log transient and non-transient faults You should include a
logging mechanism in your application every time a transient or
nontransient fault happens. A single transient fault doesn’t
indicate an error in your application. If the number of transient
faults is increasing, this can be an indicator of a more significant
potential failure or that you should increase the resources assigned

to the faulting service. You should log transient faults as warning
messages instead of errors. Using the Error Log Level could lead to
triggering false alerts in your monitoring system. You should also
consider measuring and logging the overall time taken by your
retry mechanism when recovering a faulty operation. This allows
you to measure the overall impact of transient faults on user
response times, process latency, and efficiency of the application.

Need More Review? Managing Transient Faults
You can review some general guidelines for implementing a transient fault-handling
mechanism by reviewing the following articles:

https://docs.microsoft.com/en-us/azure/architecture/best-practices/transient-
faults

https://docs.microsoft.com/en-us/aspnet/aspnet/overview/developing-apps-
with-windows-azure/building-real-world-cloud-apps-with-windows-
azure/transient-fault-handling

Need More Review? Useful Patterns
When implementing your retry mechanism, you can use the following patterns:

Retry pattern You can review the details and examples of how to implement the
pattern by reading the article at https://docs.microsoft.com/en-
us/azure/architecture/patterns/retry.

Circuit pattern You can review the details and examples of how to implement
the pattern by reading the article at https://docs.microsoft.com/en-
us/azure/architecture/patterns/circuit-breaker.

 Exam Tip

Remember to test your retry strategy carefully.
Using a wrong retry strategy could lead your
application to exhaust the resources needed for
executing your code. A wrong retry strategy can
potentially lead to infinite loops if you don’t use
circuit breakers.

CHAPTER SUMMARY

Your application needs to be able to manage transient faults.

You need to determine the type of fault before retrying the
operation.

You should not use immediate retry more than once.

https://docs.microsoft.com/en-us/azure/architecture/best-practices/transient-faults
https://docs.microsoft.com/en-us/aspnet/aspnet/overview/developing-apps-with-windows-azure/building-real-world-cloud-apps-with-windows-azure/transient-fault-handling
https://docs.microsoft.com/en-us/azure/architecture/patterns/retry
https://docs.microsoft.com/en-us/azure/architecture/patterns/circuit-breaker

You should use random starting values for the retry periods.

You should use the built-in SDK mechanism when available.

You should test your retry count and interval strategy.

You should log transient and nontransient faults.

You can improve the performance of your application by adding a
cache to your application.

Azure Cache for Redis allows the caching of dynamic content.

Using Azure Cache for Redis, you can create in-memory databases
to cache the most-used values.

Azure Cache for Redis allows you to use messaging queue
patterns.

Content Delivery Networks (CDNs) store and distribute static
content in servers distributed across the globe.

CDNs reduce the latency by serving the content from the server
nearest to the user.

You can invalidate the content of the cache by setting a low TTL
(Time-To-Live).

You can invalidate the content of the cache by removing all or part
of the content from the cache.

Application Insights gets information from your application and
sends it to Azure.

You can use Application Insights with different platforms and
languages.

Application Insights is part of the Azure Monitor service.

Application Insights generates two types of information: metrics
and logs.

Application Insights allows you to create web tests to monitor the
availability of your application.

You can configure alerts and trigger different actions associated
with web tests.

THOUGHT EXPERIMENT

In this thought experiment, demonstrate your skills and
knowledge of the topics covered in this chapter. You can
find answers to this thought experiment in the next
section.

Your company has a Line-of-Business (LOB) application
that has been developed by your team. This LOB
application is an eCommerce application that has more

usage during holiday periods. The LOB application needs
to get some information from external systems. You are
receiving some complaints about the stability and the
performance of the application. Answer the following
questions about the troubleshooting and the
performance of the application:

1. After reviewing the metrics of your application in
the Azure Monitor, you find that you don’t have
enough detail about the performance of the internal
application workflows. What should you do to get
information about the internal workflows?

2. After reviewing the metrics of your application in
the Azure Monitor, you find that some of the
stability issues are due to the external systems. You
need to minimize the effect on the user experience.
Which strategy should you use?

3. You need to ensure that the purchase process is
working correctly. You decide to configure a web test
in Application Insights. Which type of test should
you configure?

THOUGHT EXPERIMENT ANSWERS

This section contains the solution to the thought
experiment. Each answer explains why the answer choice
is correct.

1. You should integrate Application Insights
instruments with your code. Once you integrate the
Application Insights with your code, you can track
custom events in your code. You can define
operations inside your code to track complex
operations compounded of several tasks. This allows
you to get more information about the internal
workflows executed in the application. Performing
Application Insights agent-based monitoring doesn’t
provide enough information.

2. When you are dealing with the user experience, you
should consider implementing a retry strategy
consisting of a small number of retries with a short
retry interval. Using this kind of strategy allows you
to minimize the time that your users need to wait for
your application to recover from a transient fault.
You can also consider using an immediate retry as
the first retry. If this first retry fails, then you should
switch to another retry strategy. There is no one-fits-
all strategy, so you need to test your strategy to
ensure that you provide the best user experience.

3. The process of a purchase in a web application is a
complex testing scenario. In this scenario, you need
to use a multistep web test. Using Visual Studio
Enterprise, you need to record the steps needed for
performing a purchase in your web application.
Once you have generated the file with the recorded
steps, you can create a web test in Application
Insights to monitor the purchase process.

Chapter 5. Connect to and
consume Azure services and
third-party services

Nowadays, companies use different systems for different
tasks that are usually performed by different
departments. Although these separate systems work for
solving a specific need, they usually act as independent
actors in a big scenario. These independent actors
manage information about the company that can
potentially be duplicated by other independent actors.

When a company realizes that independent actors are
managing their data, they usually try to make all the
independent actors or systems work together and share
information between them. This situation is independent
of using cloud services or on-premises services. To make
the independent actors work together, you need to make
connections between each actor or service that needs to
communicate with the other.

You can use different services and techniques to achieve
this interconnection. Azure provides some useful services
that allow different services to work together without
making big changes to the interconnected services.

Skills covered in this chapter:

Skill 5.1: Develop an App Service Logic App

Skill 5.2: Implement API Management

Skill 5.3: Develop event-based solutions

Skill 5.4: Develop message-based solutions

SKILL 5.1: DEVELOP AN APP SERVICE
LOGIC APP

Exchanging information between different applications
is a goal for most companies. Sharing the information
enriches the internal process and creates more insight
into the information itself. By using the App Service
Logic App, you can create workflows that interconnect
different systems based on conditions and rules and
easing the process of sharing information between them.
Also, you can take advantage of the Logic Apps features
to implement business process workflows.

This skill covers how to

Create a Logic App

Create a custom connector for Logic Apps

Create a custom template for Logic Apps

Create a Logic App

Before you can interconnect two separate services, you
need to fully understand which information you need to
share between the services. Sometimes the information
needs to undergo some transformations before a service
can consume it. You could write code for making this
interconnection, but this is a time-consuming and error-
prone task.

Azure provides the App Service Logic Apps that allows
interconnecting two or more services sharing
information between them. A business process defines
this interconnection between different services. Azure
Logic Apps allows you to build complex interconnection
scenarios by using some elements that ease the work:

Workflows Define the source and destination of the information.
It connects to different services by using connectors. A workflow
defines the steps or actions that the information needs to make to
deliver the information from the source to the correct destination.
You use a graphical language to visualize, design, build, automate,
and deploy a business process.

Managed Connectors A connector is an object that allows your
workflow to access data, services, and systems. Microsoft provides

some prebuilt connectors to Microsoft services. These connectors
are managed by Microsoft and provide the needed triggers and
action objects to work with those services.

Triggers Triggers are events that fire when certain conditions are
met. You use a trigger as the entry or starting point of a workflow.
For example, when a new message arrives at your company’s
purchases mailbox, it can start a workflow that can access
information from the subject and body of the message and create a
new entry in the ERP system.

Actions Actions are each of the steps that you configure in your
workflow. Actions happen only when the workflow is executed.
The workflow starts executing when a new trigger fires.

Enterprise Integration Pack If you need to perform more
advanced integrations, the Enterprise Integration Pack provides
you with BizTalk Server capabilities.

Note Azure Logic APP, Azure Functions, Azure APP Service Webjobs,
and Microso� Flow
If you need to implement workflows, Microsoft provides some products that you can
use for that task. Although there is some overlap of the features provided by Logic
Apps, Functions, App Service WebJobs, and Power Automate, they are designed for
different scenarios. You can review more details about the appropriate scenarios for
each product at https://docs.microsoft.com/en-us/azure/azure-functions/functions-
compare-logic-apps-ms-flow-webjobs.

You can use Azure Logic Apps for different purposes. The
most obvious application for Azure Logic Apps would be
implementing business processes. Although there is no
direct mapping between Azure Logic Apps actions and
Business Process Model Notation (BPMN), you can use
Logic Apps for automating some simple business
processes or integrate it with Business Process Model
(BPM) engines for implementing more complex business
processes. You also can use Azure Logic Apps for sending
notifications when certain events happen or creating the
folder and permission structure in a SharePoint Online
document library when a project manager of your
company creates a new project.

When you are creating a new Azure Logic App workflow,
you need to think about how this workflow is going to
start. This is the trigger of your workflow. A trigger can
be an event that happened in a service, such as a new file
has been uploaded to an Azure Storage Account. A
workflow can also start based on a schedule. The

https://docs.microsoft.com/en-us/azure/azure-functions/functions-compare-logic-apps-ms-flow-webjobs

schedule that you configure for starting a workflow is the
trigger for the workflow. When you set your schedule and
the appropriate time arrives, the Azure Logic Apps
engine creates a new instance of your workflow. You can
configure two different types of schedules:

Recurrence In this type of trigger, you configure a regular time
interval. You can configure a start date and time, and you can also
configure the time zone for your schedule. When you configure the
time interval, you can choose from seconds to months as the
frequency. For example, you can configure a recurrence of
executing the workflow every 2 minutes or every 3 weeks.
Depending on the interval that you choose, you can select
additional details for that interval. For the Week interval, you can
select on which days the workflow is going to be executed. For the
Day or Week intervals, you can select the hours or minutes for the
execution of your workflow. The Recurrence trigger doesn’t
process the missing recurrences. That is, if a recurrence is missing
for whatever reason, the Recurrence trigger doesn’t restart the
missing recurrence.

Sliding Window This type of trigger is similar to the Recurrence
trigger, except you cannot configure advance scheduling settings,
such as specific days in the week or hours or minutes in a day.
Another essential difference is that with the Sliding Window
trigger, if a recurrence is missing, the Sliding Window trigger goes
back and processes the missing recurrence.

Scheduling the execution of your Azure Logic App is not
the only way to start your workflow. You can use other
triggers for starting the execution of the workflow. In
addition to the recurrence triggers that we reviewed
previously in this section, you can use two additional
types for triggers:

Polling The trigger queries the configured system or service
periodically for new data or if a new event happened. Depending
on the specific trigger, you can configure the polling schedule.
Once the new data or event happens, the trigger creates a new
instance of your workflow, collects the information from the
system, and passes the information to the newly created workflow
instance.

Push The trigger listens for new events or data to arrive at the
configured system or service. As soon as the new data or event
happens, the trigger creates a new instance of your workflow,
passing the data to the newly created instance.

Once the workflow starts, it needs to follow some steps
for doing the work that it’s supposed to do. Each of these
steps is an action. An action can be something like
getting data from an OData service reading information
from a text file stored in an SFTP service, or even
transforming the format of a file. There is also another
kind of action that is as important as the data gathering
or data transformation actions. Setting the value of a
variable, loops, conditional or switch statements, or
decision branching are other kinds of actions that is
critical for defining your workflow. As with any other
programming language, these structural actions enable
you to control the execution flow of your workflow.

Triggers and actions are packaged together into
connectors. You use the connectors for accessing data,
events, and actions available from other applications or
services. Azure Logic Apps offers thousands of
connectors, but all of them fit in one of the following
categories:

Built-in This type of connector contains the fundamental triggers
and actions available in Azure Logic Apps. Some of the connectors
that fit in this category allow you to schedule the execution of the
workflow, call other Azure Logic Apps or App Services, make
HTTP and HTTPS calls to endpoints, process messages in batches,
or make your Logic App callable from other services.

Managed These connectors are developed, deployed, and
maintained by Microsoft. You use these connectors for accessing
cloud services like Office 365, Azure Blob Storage, SharePoint, and
many others.

On-Premises You use this kind of connector when you need your
Azure Logic App to work with systems deployed in your on-
premises infrastructure. Using these connectors, you can access
data from File Systems, Oracle, MySQL, PostgreSQL, Microsoft
SQL Server, IBM DB2, IBM Informix, or Teradata databases. For
these connectors to work properly, you need to deploy an on-
premises data gateway.

Integration Account Allows you to connect your Azure Logic
App with third-party business partners for creating Business-to-
Business (B2B) solutions. Integrations Accounts are available only
through the Enterprise Integration Pack (EIP) in Azure. You use
this kind of connector for transforming the messages between the
different B2B systems. You can apply AS2, EDIFACT, X12, or Flat

files decoding or encoding, Liquid and XML transformations, or
XML validations.

ISE These are the connectors that you need to use when your
Azure Logic App needs to run in an Integration Service
Environment (ISE). This is a dedicated environment where you
execute your Azure Logic Apps. There are special connectors
designed for working in an ISE. 245Those connectors are marked
with the label CORE if they are built-in connectors that you can
use in an ISE or if they are managed connectors that you can use
in an ISE, you will see the ISE label below the name of the
connector. When using an ISE you are not limited to ISE
connectors; you can also use regular connectors in an Integration
Service Environment.

Additionally, to the classification that we reviewed in the
previous list, the connectors can be classified as
Standard or Enterprise connectors. This classification is
essential because it directly affects the costs associated
with running your Azure Logic App workflow. When you
run a workflow, you are charged when you use the
workflow, except when your workflow is running inside
an ISE.

When you run your Azure Logic App workflow in the
public, multitenant, global environment, you pay only for
the actions that your workflow runs. An action is any of
the steps that configure your workflow. Triggers, loops,
conditional statements, or any of the control actions
count for the calculation of the costs of your workflow
execution. There are three pricing levels:

Basic This level includes built-in connectors, triggers, and control
workflow actions.

Standard This includes the actions defined in managed
connectors. Any custom connector that you create also fits into
this category.

Enterprise These are specialized connectors for integrating B2B
applications with your Azure Logic App. Some examples of
enterprise connectors are SAP, IBM 3270, or IBM MQ.

It is also important to note that n-premises connectors
can be Standard or Enterprise connectors. In general,
when you are calculating the costs of your Azure Logic
App, you should review the list of Standard or Enterprise

connectors for having an accurate idea of which type of
connector you are using in your workflow. You can find a
complete list of connectors by reviewing the article at
https://docs.microsoft.com/en-
us/connectors/connector-reference/.

Now that you have a basic understanding of the different
parts of an Azure Logic App workflow it is time to create
your own workflow. The following procedure shows how
to create an Azure Logic App workflow that writes a
message in the Microsoft Teams app when a new build
completes in Azure DevOps. For this procedure, you
need an Azure DevOps account with a configured project
that you can build. If you don’t have an Azure DevOps
account yet, you can create one by following the quick
start guide at https://docs.microsoft.com/en-
us/azure/devops/user-guide/sign-up-invite-
teammates?view=azure-devops. You also need a
Microsoft Office 365 subscription with access to the
Microsoft Teams application. Start by creating and
configuring the Azure Logic App:

1. Open the Azure portal (https://portal.azure.com).

2. Click the Create A Resource button at the top of the Azure portal.

3. On the New blade, on the Azure Marketplace list at the left side of the
blade, click Integration.

4. In the Featured column on the right side of the blade, click Logic App.

5. On the Logic App blade, on the Resource Group drop-down menu,
select the resource group where you want to create your Azure Logic
App. Alternatively, you can create a new resource group by clicking the
Create New link below the resource group drop-down menu.

6. Type a name in the Logic App Name text box.

7. In the Select The Location control, ensure that the Region option is
selected.

8. Select a location from the Location drop-down menu.

9. Leave the Log Analytics option set to the Off value.

10. Click the Review + Create button at the bottom of the blade.

11. Click the Create button at the bottom of the blade.

12. In the Microsoft.EmptyWorkflow deployment window, click the Go To
Resource button. This button appears once the deployment of your new
Azure Logic App finishes successfully.

https://docs.microsoft.com/en-us/connectors/connector-reference/
https://docs.microsoft.com/en-us/azure/devops/user-guide/sign-up-invite-teammates?view=azure-devops
https://portal.azure.com/

13. On the Logic Apps blade, in the Logic App Designer, click the Blank
Logic App in the Templates section.

14. In the Logic Apps Designer, in the Search Connectors And Triggers text
box, type Azure DevOps.

15. Click the Azure DevOps icon on the Results panel.

16. On the Triggers tab, select the trigger named When A Build Completes.

17. Click the Sign In button on the Azure DevOps element. At this point,
you connect your Azure Subscription with your Azure DevOps account.

18. On the panel for the When A Build Completes trigger, shown in Figure
5-1, select your Organization’s name from the Organization Name drop-
down menu.

Figure 5-1 Configuring an Azure Logic Apps trigger

19. On the Project Name drop-down menu, select the name of the project
that you want.

20. Click the New Step button below the trigger panel.

21. On the Choose An Action panel, type Teams in the Search Connectors
And Actions text box.

22. On the Actions tab, click the Post A Message (V3) action.

23. On the Post A Message (V3) action panel, select a team from the Team
drop-down menu.

24. Select General from the Channel drop-down menu.

25. In the Message text area, type The.

26. In the Dynamic Content dialog box, shown in Figure 5-2, on the right
side of the Message text area, click the See More link. This link shows
the list of dynamic attributes that you can add to your message.

Figure 5-2 Dynamic content from a connector trigger

27. Scroll down the list of dynamic attributes and click the Value Build
Definition Name dynamic attribute.

28. Type build finished with status in the message area next to the
dynamic attribute.

29. Click the Value Status dynamic attribute.

30. Click the Save button on the top-left corner of the Azure Logic Apps
Designer blade.

31. Click the Run button at the top-left corner of the Azure Logic Apps
Designer blade.

At this point, the Azure Logic Apps start listening for the
configured trigger in Azure DevOps. When a new build
finishes in Azure DevOps, Azure Logic Apps sends a
message to the General channel in the configured team
in your Microsoft Teams account. Now, you are going to
create a pipeline in Azure DevOps for building an
example project. Once the build finishes, you are going to
receive a new message in the Microsoft Teams channel:

1. Navigate to the following GitHub example repo
https://github.com/MicrosoftDocs/pipelines-dotnet-core and sign in to
your account. If you don’t have a GitHub account, you can create a new
one for free at https://github.com/join.

https://github.com/MicrosoftDocs/pipelines-dotnet-core
https://github.com/join

2. At the top-right corner of the project’s page, click the Fork button.

3. Open your Azure DevOps account (https://dev.azure.com). If you see
the generic Azure DevOps page describing the service instead of your
Azure DevOps account, click the Sign In to Azure DevOps link below the
Start Free button.

4. In the list of projects in your Azure DevOps account, click the project
name that you configured in step 19 of the previous procedure.

5. Click the Pipelines element on the navigation bar on the left side of the
project’s page.

6. Click the Create Pipeline button.

7. On the New Pipeline window, click GitHub.

8. Sign in to your GitHub account.

9. On the Authorize Azure Pipelines (OAuth) window, click the Authorize
Azure Pipelines button at the bottom of the page.

10. In your Azure DevOps account, on the Select A Repository page, click
the pipelines-dotnet-core project.

11. In your Azure DevOps account, on the Configure Your Pipeline page,
click ASP.NET Core.

12. On the Review Your Pipeline YAML page, review the details for your
pipeline.

13. Click the Run button at the top-right corner of the page.

14. Once the pipeline has been created, a page with the details of the
execution of your pipeline appears. If everything works correctly, you
should see a job with the success status in the list of Jobs in the Job
panel.

At this point, the Azure DevOps agent is building the
sample project. Once the build finishes, you should
receive a new message in your Microsoft Teams channel,
as shown in Figure 5-3.

Figure 5-3 A message in Microsoft Teams from Azure
DevOps

Need More Review? Azure Logic APP Pricing
Calculating the costs associated with an Azure Logic App workflow can be
complicated. Each of the iterations in a loop is one or more action executions. The
different connector types are charged differently, depending on whether they are Basic,
Standard, or Enterprise. A workflow executed in an Integration Service Environment
has its own pricing. You can read an article with the details about how Azure calculates
how much you have to pay for the execution of your workflow at
https://docs.microsoft.com/en-us/azure/logic-apps/logic-apps-pricing.

https://dev.azure.com/
https://docs.microsoft.com/en-us/azure/logic-apps/logic-apps-pricing

 Exam Tip

When you are working with Integration Service
Environments (ISE), you have specific
connectors that run inside the ISE. These special
ISE connectors are marked with a label.
Although ISE 249environments use dedicated
resources for your environment, you still can use
global, public, multitenant connectors, like
Office 365 or Dropbox connectors.

Create a custom connector for Logic Apps

Microsoft provides more than 200 built-in connectors
that you can use in your Azure Logic Apps workflow.
Despite this number of connectors, there are times when
you need some specific features that are not provided by
the built-in or managed connectors, or you want to
create a connector for your company’s application.

You can create custom connectors for Microsoft
PowerAutomate (formerly known as Flow), PowerApps,
and Azure Logic Apps. Although you cannot share Azure
Logic Apps connectors with Microsoft PowerAutomate
and PowerApps connectors, the principle for creating
custom connectors are the same for the three platforms.
A custom connector is basically a wrapper for a REST or
SOAP API. This wrapper allows Azure Logic Apps to
interact with the API of the application. The application
that you want to include in the custom connector can be
a public application, like Amazon Web Services, Google
Calendar, or the API of your application published to the
Internet. Using the on-premises data gateway, you can
also connect the custom connector with an on-premises
application deployed in your data center. Every custom
connector has the following life cycle:

1. Build your API You can wrap any REST or SOAP API in a custom
connector. If you are creating your API, you should consider using

Azure Functions, Azure Web Apps, or Azure API Apps.

2. Secure your API You need to authenticate the access to your API. If
you are implementing your application using Azure Functions, Azure
Web Apps, or Azure API Apps, you can enable the Azure Active
Directory authentication in the Azure portal for your application. You
can also enforce authentication directly on your API’s code. You can use
any of the following authentication mechanisms:

1. Generic OAuth 2.0

2. OAuth 2.0 for specific services, like Azure Active Directory,
Dropbox, GitHub, or SalesForce

3. Basic Authentication

4. API Key

3. Describe the API and define the custom connector You need to
provide a description of the different endpoints that your API has.
Azure Logic Apps supports two different language-agnostic, machine-
readable document formats that you can use for documenting this
description: OpenAPI (formerly known as Swagger) or Postman
collections. You can create a custom connector from the OpenAPI or
Postman collection documentation.

4. Use the connector in an Azure Logic Apps Once you have created
the custom connector, you can use it as a regular managed built-in
connector in your workflow. You need to create a connection to your
API using your custom connector. Then you can use the triggers and
actions that you configured in your custom connector.

5. Share your connector Once you have created your custom
connector, you can share it with other users in your organization. This
step is optional.

6. Certify your connector If you want to share your custom connector
with other users outside your organization, you need to send the custom
connector to Microsoft. Then Microsoft can review your custom
connector to ensure that it works correctly. Once the connector is
reviewed and validated, Microsoft certifies it, and you can share it with
users outside your organization.

Now that you have reviewed the life cycle of an Azure
Logic App Custom Connector, you are going to create a
custom connector for connecting with an API. For this
example, you are going to create a simple Web API 2
application that simulates a book-managing system.
Although this example is quite simple, it covers some key
points that you need to consider when creating an Azure
Logic App Custom connector. The API that you are going
to implement in this example is not appropriate for
production environments because it doesn’t take into

consideration important aspects like performance or
security. Use the following steps for creating the API that
you are going to use for your custom connector:

1. Open Visual Studio 2019 on your computer.

2. In the start window, click Create A New Project in the Get Started
column on the right side of the window.

3. In the Create A New Project window, from the All Languages drop-
down menu, select C#.

4. On the Search For Templates text box type asp.net.

5. On the result list, click ASP.NET Web Application (.NET Framework).

6. Click the Next button at the bottom right corner of the window.

7. In the Configure Your New Project window, type a Project Name, a
Location, and a Solution Name for your project.

8. Click the Create button at the bottom-right corner of the window.

9. In the Create A New ASP.NET Web Application window, select the Web
API template on the template list in the middle of the left side of the
window.

10. On the right side of the Create A New ASP.NET Web Application
window, in the Authentication section, ensure the Authentication is set
to No Authentication.

11. Click the Create button on the bottom-right corner of the window.

12. In the Visual Studio window, click Tools > NuGet Package Manager >
Manage NuGet Packages For Solution.

13. On the NuGet Package Manager tab, click Browse.

14. Type swashbuckle and press Enter.

15. Click the Swashbuckle package.

16. On the right side of the NuGet Manager tab, click the check box next to
your project.

17. Click the Install button.

18. In the Preview Changes window, click OK.

19. In the License Acceptance window, click the I Accept button.

20. Repeat steps 13 to 19 and install the TRex NuGet package.

21. On the Solution Explorer window, right-click the Models folder.

22. On the contextual menu, click Add > New Item.

23. In the Add New Item window, select Class from the list of new items.

24. In the name text box at the bottom of the window, type Book.cs.

25. Click the Add button at the bottom-right corner of the window.

26. Replace the content of the Book.cs file with the content in Listing 5-1.

Listing 5-1 Book.cs

Click here to view code image

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch05_images.xhtml#lis5-1a

27. Repeat steps 21 to 25 and create the class Callback.cs.

28. Replace the content of the Callback.cs file with the content in Listing 5-
2.

Listing 5-2 Callback.cs

Click here to view code image

// C# .NET
using System;
using TRex.Metadata;

namespace <replace_with_your_project_name>.Models
{
 public class Book
 {
 public Book()
 {
 this.Id = Guid.NewGuid();
 }

 [Metadata("Callback ID", Visibility = Visi
 public Guid Id { get; }

 [Metadata("Title", "The title of the book"
 public string Title { set; get; }

 [Metadata("Author", "The author of the boo
 public string Author { set; get; }
 }
}

// C# .NET
using System;
using System.Net.Http;
using System.Net.Http.Headers;
using System.Threading.Tasks;
using TRex.Metadata;
using Newtonsoft.Json.Linq;

namespace <replace_with_your_project_name>.Models
{
 public class Callback
 {
 public Callback()
 {
 this.Id = Guid.NewGuid();
 }
 [Metadata("Callback ID", Visibility = Visi
 public Guid Id { get; }

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch05_images.xhtml#lis5-2a

29. On the Solution Explorer window, right-click the name of your project.
On the contextual menu, click Add > New Folder.

30. Type Helpers as the name of the new folder.

31. Repeat steps 21 to 25 and create two additional classes in the Helpers
folder. The two classes should be BooksSingleton.cs and
CallbacksSingleton.cs.

32. Replace the content of file BooksSingleton.cs with the content of Listing
5-3.

Listing 5-3 BooksSingleton.cs

Click here to view code image

 [CallbackUrl]
 [Metadata("Callback URL", Visibility = Vis
 public Uri Uri { set; get; }

 public HttpResponseMessage InvokeAsync<TOu
 {
 HttpClient httpClient = new HttpClient

 httpClient.DefaultRequestHeaders.Accep
 httpClient.DefaultRequestHeaders.Accep
 new MediaTypeWithQualityHeaderValue("a

 return Task.Run(async () => await http
 JObject.FromObject(triggerOutput))).Re
 }
 }
}

// C# .NET
using <replace_with_your_project_name>.Models;
using System;
using System.Collections.Generic;
using System.Linq;

namespace <replace_with_your_project_name>.Helpers
{
 public sealed class BooksSingleton
 {
 private static readonly BooksSingleton m_i

 private static readonly List<Book> _books;
 public static BooksSingleton Instance
 {
 get
 {
 return m_instance;
 }
 }

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch05_images.xhtml#lis5-3a

 static BooksSingleton()
 {
 m_instance = new BooksSingleton();
 _books = new List<Book>();
 }

 private BooksSingleton()
 {
 }

 public void AddBook(Book book)
 {
 if (book != null)
 {
 _books.Add(book);
 }
 }

 public void ModifyBook(Book book)
 {
 var bookToModify = _books.SingleOrDefa
 if (bookToModify != null)
 {
 bookToModify.Author = book.Author;
 bookToModify.Title = book.Title;
 }
 }

 public IEnumerable<Book> GetBooks()
 {
 return _books.ToArray();
 }

 public bool DeleteBookById(string id)
 {
 bool deleted = false;
 Guid guidToRemove = Guid.Parse(id);
 var booktToRemove = _books.SingleOrDef
 if (booktToRemove != null)
 {
 _books.Remove(booktToRemove);
 deleted = true;
 }

 return deleted;
 }

 public Book GetBookById(string id)
 {
 Guid guid = Guid.Parse(id);
 return _books.SingleOrDefault(b => b.I
 }

33. Replace the content of the file CallbacksSingleton.cs with the content in
Listing 5-4.

Listing 5-4 CallbacksSingleton.cs

Click here to view code image

 }
}

// C# .NET
using <replace_with_your_project_name>.Models;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;

namespace <replace_with_your_project_name>.Helpers
{
 public class CallbacksSingleton
 {
 private static readonly CallbacksSingleton

 private static readonly List<Callback> _ca
 public static CallbacksSingleton Instance
 {
 get
 {
 return m_instance;
 }
 }

 static CallbacksSingleton()
 {
 m_instance = new CallbacksSingleton();
 _callbacks = new List<Callback>();
 }

 private CallbacksSingleton()
 {
 }

 public void AddCallback(Callback callback)
 {
 if (callback != null)
 {
 //avoid duplicates
 Callback callbackToBeAdded = _call
 Compare(c.Uri, callback.Uri, UriCo
 Unescaped, StringComparison.Curren
 if (callbackToBeAdded == null)
 _callbacks.Add(callback);

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch05_images.xhtml#lis5-4a

34. On the Solution Explorer window, expand the Controllers folders and
remove the ValuesController.cs file.

35. Right-click the Controllers folder and then click Add > Controller.

36. In the Add New Scaffolded Item, select Web API 2 Controller – Empty.

37. Click the Add button on the bottom right corner of the window.

38. In the Add Controller window, type BooksController in the
Controller Name text box.

39. Click the Add button.

 }
 }

 public void ModifyCallback(Callback callba
 {
 var callbackToModify = _callbacks.Sing
 b.Id.Equals(callback.Id));
 if (callbackToModify != null)
 {

 }
 }

 public IEnumerable<Callback> GetCallbacks(
 {
 return _callbacks;
 }

 public bool DeleteCallbackById(string id)
 {
 bool deleted = false;
 Guid guidToRemove = Guid.Parse(id);
 var callbackToRemove = _callbacks.Sing
 b.Id.Equals(guidToRemove));
 if (callbackToRemove != null)
 {
 _callbacks.Remove(callbackToRemove
 deleted = true;
 }

 return deleted;
 }

 public Callback GetCallbackById(string id)
 {
 Guid guid = Guid.Parse(id);
 return _callbacks.SingleOrDefault(b =>
 }
 }
}

40. Replace the content of the BooksController.cs file with the content of
the Listing 5-5.

Listing 5-5 BooksController.cs

Click here to view code image

// C# .NET
using <replace_with_your_project_name>.Models;
using <replace_with_your_project_name>.Helpers;
using Swashbuckle.Swagger.Annotations;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Net;
using System.Net.Http;
using System.Threading.Tasks;
using System.Web.Http;
using TRex.Metadata;

namespace <replace_with_your_project_name>.Control
{
 public class BooksController : ApiController
 {
 private readonly BooksSingleton _books = B
 private static readonly CallbacksSingleton
 Instance;

 // Subscribe to newly created books
 [HttpPost, Route("books/subscribe")]
 [Metadata("New book created", "Fires whene
 list.", VisibilityType.Important)]
 [Trigger(TriggerType.Subscription, typeof(
 [SwaggerResponseRemoveDefaults]
 [SwaggerResponse(HttpStatusCode.Created, "
 [SwaggerResponse(HttpStatusCode.BadRequest
 configuration")]
 public IHttpActionResult Subscribe(Callbac
 {
 _callbacks.AddCallback(callback);
 return CreatedAtRoute(nameof(Unsubscri
 Id }, string.Empty);
 }

 [HttpDelete, Route("books/subscribe/{callb
 (Unsubscribe))]
 [Metadata("Unsubscribe", Visibility = Visi
 [SwaggerResponse(HttpStatusCode.OK)]
 public IHttpActionResult Unsubscribe(strin
 {
 _callbacks.DeleteCallbackById(callback
 return Ok();
 }

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch05_images.xhtml#lis5-5a

 [HttpGet, Route("books/subscriptions")]
 [Metadata("Get subscriptions", "Get all th
 [SwaggerResponse(HttpStatusCode.OK, "An ar
 typeof(Array))]

 public IEnumerable<Callback> GetCallbacks(
 {
 return _callbacks.GetCallbacks();
 }

 // GET api/books
 [HttpGet, Route("books")]
 [Metadata("Get books", "Get all the books
 [SwaggerResponse(HttpStatusCode.OK, "An ar
 public IEnumerable<Book> Get()
 {
 return _books.GetBooks();
 }

 // GET api/books/5
 [HttpGet, Route("books/{id}", Name = "GetB
 [Metadata("Get single book", "Get a single
 any GUID valid string")]
 [SwaggerResponse(HttpStatusCode.OK, "An ob
 typeof(Book))]
 public Book Get(string id)
 {
 return _books.GetBookById(id);
 }

 // POST api/books
 [HttpPost, Route("books")]
 [Metadata("Add a new book", "Add a new boo
 object is compound of a Title and an Autho
 [SwaggerResponse(HttpStatusCode.Created)]
 public IHttpActionResult Post([FromBody] B
 {
 _books.AddBook(book);

 foreach(var callback in _callbacks.Get
 {
 callback.InvokeAsync(book);
 }

 return CreatedAtRoute("GetBook", new {
 }

 // PUT api/books/5
 [HttpPut, Route("books/{id}")]
 [Metadata("Modify an existing book object"
 to provide the new values for the Title or
 book object using its id")]
 public void Put([FromBody] Book book)

41. Open the SwaggerConfig.cs file. You can find this file in the App_Start
folder.

42. In the SwaggerConfig.cs file, uncomment the line c.PrettyPrint();.

43. Add the line c.ReleaseTheTRex(); inside the EnableSwagger
method, just after this line:

Click here to view code image

//c.CustomProvider((defaultProvider) => new
CachingSwaggerProvider
(defaultProvider));

44. Uncomment this line:

Click here to view code image

c.DocExpansion(DocExpansion.List);

45. Add the line using TRex.Metadata at the beginning of the file.

At this point, you can test your API. Use the following
steps for testing your API:

1. In your Visual Studio 2019 window, ensure that your API project is
open. Then press F5.

2. Once your web application is loaded in your web browser, append the
/swagger URI to the URL in your web browser. The final address
should look like similar to https://localhost:44398/swagger.

3. On your API list of methods, shown in Figure 5-4, click the POST
/books link. This expands the options for the POST /books endpoint.

 {
 _books.ModifyBook(book);
 }

 // DELETE api/books/5
 [Metadata("Delete a book object", "Delete
 [HttpDelete, Route("books/{id}")]
 public void Delete(string id)
 {
 _books.DeleteBookById(id);
 }
 }
}

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch05_images.xhtml#pg259-1a
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch05_images.xhtml#pg259-2a

Figure 5-4 List of endpoints of a web API

4. In the POST /books endpoint green area, in the Parameters section,
type a JSON object in the value text area. You can find an example of
the needed structure in the Data Type column at the end of the same
line.

5. Click the Try It Out! button in the bottom-left corner of the endpoint
green area.

6. In the Response Body section, you should get the JSON representation
of your newly created book with a valid ID assigned. You can also check
that the book has been created successfully by clicking the Try It Out!
button in the GET /books endpoint blue area.

Now that you have tested that your web API works
correctly, you need to publish to an Azure App Service.
An alternative to deploying the web API to an Azure App
Service could be using an on-premises data gateway for
connecting to the local deployment of our web API. Use
the following steps for deploying the web API to an Azure
App Service:

1. In your Visual Studio 2019 window, ensure that you have opened the
web API.

2. On the right side of the Visual Studio window, in the Solution Explorer
window, right-click the project’s name.

3. In the contextual menu, click Publish. This opens the Publish window.

4. In the Publish window, make sure that Azure is selected from the list of
Targets on the right side of the window.

5. Click Next.

6. Select Azure App Service (Windows) in the Specific Target section.

7. Click Next.

8. On the App Service section, click Create A New Azure App Service at the
bottom of the window. If you already have an Azure App Service plan
that you want to use for hosting the App Service, you can select it in the
tree control in this same window.

9. In the App Service (Windows) window, leave all options as is and click
the Create button. Remember to delete the Resource Group and all its

associated resources after you finish this example because these
resources consume credit from your Azure subscription.

10. On the tree control, expand the newly created resource group and click
the newly created Azure App Service.

11. Click the Finish button.

12. Click the Publish button.

13. Once the publishing process has finished, Visual Studio opens your
default web browser with the URL of the newly deployed App Service.
This URL will have the structure
https://<your_app_service_name>.azurewebsites.net.

14. Ensure that your API is working correctly by repeating the testing steps
previously shown in this section. This time you need to use the URL
https://<your_app_service_name>.azurewebsites.net/swagger.

At this point, you are ready to create your Azure Logic
App Custom Connector. Before proceeding to create your
custom connector for your API, let’s dig a little bit on the
code of the API to understand the Azure Logic App
Custom Connector that you are going to create. The API
allows you to create, delete, modify, and query a book in
the list of books that the application can store. You can
also get the complete list of books stored in the API. As
previously reviewed in this section, a connector can have
a trigger that represents an event that starts the sequence
of actions in our workload. In our testing API, the trigger
represents the event of adding a new book to the list of
books. You can see how we fire the trigger in the
following code snippet extracted from the Post method in
the BooksController:

Click here to view code image

_books.AddBook(book);
foreach (var callback in
_callbacks.GetCallbacks())
{
 callback.InvokeAsync(book);
}

As you can see in the previous code, after we add a new
book to the list of books, we call the InvokeAsync
method of the callback object. The reason for doing this
is because Azure Logic Apps works with two types of

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch05_images.xhtml#pg261a

triggers: pull and push triggers. In this example, we
decided to use a push trigger. This means that the API
notifies the Azure Logic App when the event happens.
The way the API can notify the Azure Logic App is by
using the webhook pattern. For this reason, we need to
provide two additional endpoints to the API, one for
allowing the Azure Logic App to subscribe to the API and
one for deleting the subscription. In the example, these
endpoints are POST /books/subscribe and DELETE
/books/subscribe/{callbackID} (you can view
these endpoints in Figure 5-3 earlier in this section).

The workflow subscribes to the API when the workflow
changes in any way; for example, when you run it for the
first time, change the input parameters to the trigger, or
renew the credentials for connecting to your API. During
the subscription process, your workflow provides the
callback URL that your API needs to use for sending back
the information needed for the workflow. The
unsubscribe process happens automatically when the
trigger, the workflow, or the subscription is deleted or
disabled.

Swagger provides all this information about which
endpoint Azure Logic App should use for subscribing to
the events in your API, the structure of the data that uses
your API, or the available endpoints for the connector.
We could manually create the Swagger document that
describes our API, but that would be a time-consuming
and error-prone task. To ease the creation and
management of the Swagger document that describes the
API, we used the packages Swashbuckle
(https://github.com/domaindrivendev/Swashbuckle)
and TRex Metadata Library
(https://github.com/nihaue/TRex). The Swashbuckle
package adds Swagger to the API, providing a Swagger
generator and a UI for navigating and testing the API.
TRex Metadata Library package extends the capabilities
of Swashbuckle, so the Swagger document generated by

https://github.com/domaindrivendev/Swashbuckle
https://github.com/nihaue/TRex

Swashbuckle is ready to be consumed by the Logic App
Designer.

Now that you have a better understanding of the key
parts of the API that enable the interaction with Azure
Logic Apps, it’s time to create a custom connector for
your API:

1. In your web browser, download the Swagger definition of your API from
https://<your_app_service_name>.azurewebsites.net/swagger/docs
/v1.

2. In your web browser, right-click the Swagger definition of the API, click
Save As in the contextual menu, and save the page to your desktop as a
file with the name swagger.json. You need this file for a later step.

3. Open the Azure portal (https://portal.azure.com).

4. Click Create A Resource button in the top area of the Azure portal.

5. Type logic apps in the Search The Marketplace text box.

6. Click Logic Apps Custom Connector in the result list.

7. Click the Create button.

8. On the Create Logic Apps Custom Connector panel, select an existing
resource group in the Resource Group drop-down menu where you
want to store your custom connector. Alternatively, you can create a
new resource group by clicking the Create New link below the Resource
Group drop-down menu.

9. Type a name for your custom connector in the Custom Connector Name
text box.

10. In the Select The Location control, ensure that the option Region is
selected.

11. Select a location in the Location drop-down menu.

12. Click the Review + Create button at the bottom of the panel.

13. Click the Create button.

14. Type the name of your newly created custom connector on the search
text box at the top of the Azure portal.

15. Click the name of your Azure Logic App Custom Connector in the
results.

16. Click the Edit button on the Custom Connector’s Overview blade.

17. On the Edit Logic Apps Custom Connector blade, click the Import
button on the How Do You Want To Create Your Connector? panel,
which is shown in Figure 5-5.

https://portal.azure.com/

Figure 5-5 Importing the OpenAPI definition of a REST API

18. Choose the JSON file that you downloaded in step 2.

19. In the General Information section, review the information in this
section. You don’t need to make any changes here.

Note Base URL
In this example, the endpoint definition already contains the correct base URL in
the endpoint definition. If you change the default Base URL property in the General
Information section in your Azure Logic Apps Custom Connector, you will receive a
404 error every time you try to use your custom connector in an Azure Logic Apps
workflow>.

20. Click the Security link on top of the page. You can also find a Security
link at the bottom-left corner of the page. You can use either of these
links for navigating to the Security section.

21. Review the options on the Security page. For this custom connector, you
aren’t using any authentication. Ensure that the option No
Authentication is selected.

22. Click the Definition link on top of the page. You can also find a
Definition link at the bottom-left corner of the page. You can use either
of these links for navigating to the Definition section.

23. Review the settings on the Definition page. On this page, you can find
all the endpoints that have been defined in the Swagger JSON file that
you imported in step 18. These endpoints translate into Actions or
Triggers, depending on the definition in the JSON file. You can also
manually add new Actions and Triggers as you need by using this page.

24. Scroll down the page until you see the Triggers section.

25. Click the NewBookCreated trigger. There should be a red circle with an
exclamation mark beside the name of the trigger. This icon indicates
that there is a problem with the definition of the trigger.

26. On the NewBookCreated trigger definition window, scroll to the end of
the Request section. In the Body section inside the Request section, you
should see the Callback object with a red circle with an exclamation
mark.

27. Click the Callback object.

28. Click Edit on the contextual menu over the Callback object.

29. In the Body section of the callback object, click the Callback URL
parameter with the red circle with an exclamation mark icon.

30. Click Edit on the contextual menu over the Callback URL parameter.

31. In the Callback URL parameter definition, in the Is Required? section,
select Yes.

32. At the bottom of the Callback URL parameter definition page, in the
Validation section, ensure that there is a green icon representing that
the definition is okay.

33. Click the Back icon at the top-left corner of the Callback URL parameter
definition page.

34. Click the Back icon at the top-left corner of the Callback object
definition page.

35. Repeat steps 27 to 34 for the Callback objects with the exclamation
mark inside a red circle icon in the References section on the left side of
the Definition page.

36. Ensure that there is no exclamation mark inside a red circle icon on the
Definition page.

37. Click the Update Connector link at the top-right corner of the Edit Logic
Apps Custom Connector blade.

At this point, you have successfully created your Azure
Logic Apps Custom Connector. In the following steps,
you are going to create a workflow for testing your new
custom connector. This workflow uses the trigger defined
in your Azure Logic App Custom Connector. It gets the
information from the newly created book in the API and
puts the information in a Microsoft Teams channel:

1. Open the Azure portal (https://portal.azure.com).

2. Click Create A Resource in the top area of the Azure portal.

3. Type logic app in the Search The Marketplace text box.

4. Click Logic App in the results list.

5. Click the Create button.

6. On the Logic App panel, select an existing resource group in the
resource group drop-down menu, where you want to store your Logic
App. Alternatively, you can create a new resource group by clicking the
Create New link below the resource group drop-down menu.

7. Type a name for your Logic App in the Logic App Name text box.

8. In the Select The Location control, ensure that the option Region is
selected.

9. Select a location in the Location drop-down menu.

10. Click the Review + Create button at the bottom of the panel.

11. Click the Create button.

12. Navigate to the newly created Azure Logic App.

https://portal.azure.com/

13. On the Logic Apps Designer blade, choose the Blank Logic App
template. If you don’t get the Logic Apps Designer blade as soon as you
open your Azure Logic App, you can click Logic App Designer on the
navigation menu on the left side of your Azure Logic App.

14. On the Logic App Designer, click the Custom tab.

15. Click your newly created custom connector.

16. In the Triggers section, click New Book Created. This is a simple trigger
that requires no additional parameters.

17. Click the New Step button.

18. Type Microsoft Teams in the Search Connectors And Actions text box
on the Choose An Action panel.

19. Click the Microsoft Teams icon.

20. Click the Post A Message (V3) (preview) action.

21. Grant access to your Microsoft Teams account.

22. On the Post A Message (V3) (preview) action panel, select an existing
team from the Team drop-down menu.

23. Select the General channel in the Add Teams Channel ID drop-down
menu.

24. Click inside the Message text box.

25. In the Message text area, type Title: followed by a space.

26. In the Dynamic Content dialog box, click the See More link in the New
Book Created section.

27. In the New Book Created section, click Title.

28. Write a new line in the Message text area.

29. In the Message text area, type Author: followed by a space.

30. Repeat steps 26 and 27 for the Author property. Your Message area
should look similar to Figure 5-6.

Figure 5-6 Send a Message to Microsoft Teams

31. Click the Save button in the top-left corner of the Logic Apps Designer
blade.

Need More Review? Variables
You can declare and use variables in your workflow. These variables can contain data
from your connectors, fixed values, or the result of some operations that you perform
inside your workflow. You can learn more about how to use variables in your workflow
by reviewing the article https://docs.microsoft.com/en-us/azure/logic-apps/logic-apps-
create-variables-store-values.

At this point, you should be ready to test your new Azure
Logic Apps Custom Connector. For testing this workflow,
you can use the same procedure that you used for testing
the API earlier in this section. Create a new book in the
API. The new book should appear in the Microsoft
Teams channel that you configured in the Azure Logic
Apps workflow, as shown in Figure 5-7.

Figure 5-7 Result of the workflow execution in
Microsoft Teams

 Exam Tip

You can create custom connectors for Azure
Logic Apps, Microsoft Flow, and Microsoft
PowerApps. You cannot reuse a connector
created for Azure Logic Apps in Microsoft Flow
or PowerApps (or vice versa). You can use the
same OpenAPI definition to create a custom
connector for these three services.

Need More Review? Custom Connector
You can learn more about custom connectors at https://docs.microsoft.com/en-
us/connectors/custom-connectors/.

Create a custom template for Logic Apps

https://docs.microsoft.com/en-us/azure/logic-apps/logic-apps-create-variables-store-values
https://docs.microsoft.com/en-us/connectors/custom-connectors/

Once you have created an Azure Logic App, you can
reuse it in other Azure subscriptions or share it with
other colleagues. You can create a template from your
working Azure Logic App to automate deployment
processes. When you create a template, you are
converting the definition of your Azure Logic App into an
Azure Resource Manager (ARM) template. Using ARM
templates enables you to take advantage of the flexibility
of the ARM platform by separating the definition of the
Azure Logic App from the values used in the logic app.
When you deploy a new Azure Logic App from a
template, you can provide a parameter file in the same
way that you do with other ARM templates. Azure also
provides some prebuilt Logic App templates. You can use
these templates as a base for creating templates.

You can download an Azure Logic Apps template using
several mechanisms:

Azure portal You can use the Export Template option in the
Azure Logic App in the Azure portal for downloading the ARM
template.

Visual Studio You can use the Azure Logic Apps Tools extension
for Visual Studio to connect your Azure subscription and
download a template from your Azure Logic Apps.

PowerShell You can use the LogicAppTemplate PowerShell
module to download a template from your Azure Logic App.

A Logic App template is a JSON file comprised of three
main areas:

Logic App resource This section contains basic information
about the Logic App itself. This information is the location of the
resource, the pricing plans, and the workflow definition.

Workflow definition This section contains the description of
the workflow, including the triggers and actions in your workflow.
This section also contains how the Logic App runs these triggers
and actions.

Connections This section stores the information about the
connectors that you use in the workflow.

Use the following procedure to create a template from
your Azure Logic App using Visual Studio:

1. Download the Azure Logic Apps Tool extension for Visual Studio 2019
at https://aka.ms/download-azure-logic-apps-tools-visual-studio-
2019.

2. Install the Azure Logic Apps Tool extension.

3. Open Visual Studio 2019.

4. In the Visual Studio 2019 welcome window, click the Continue Without
Code link below the Get Started section.

5. In the Visual Studio window, click View > Cloud Explorer.

6. In the Cloud Explorer window, shown in Figure 5-8, click the user icon
to open the Account Manager.

Figure 5-8 Cloud Explorer window

7. Click the Manage Accounts link.

8. In the All Accounts section, click the Sign In link.

9. Sign in with an account that has privileges to access your Azure
subscription.

10. Ensure that your Azure subscription appears in the list of subscriptions
in the Cloud Explorer window.

11. Click the Apply button.

12. In the Cloud Explorer tree control, navigate to Your Subscription >
Logic Apps.

13. Right-click the Logic App that you want to convert to a template.

14. In the contextual menu shown in Figure 5-9, click Open With Logic App
Editor.

https://aka.ms/download-azure-logic-apps-tools-visual-studio-2019

Figure 5-9 Logic App tool contextual menu

15. On the Logic App Editor tab, click the Download button.

16. Select a location to which you want to download the JSON file.

At this point, you can edit and customize your template.
Once you are done with the modifications to your
template, you can create a parameters file for deploying
this template.

Need More Review? Logic APP Templates
You can learn more by reading the following articles about Logic apps templates:

Create Logic App Templates https://docs.microsoft.com/en-us/azure/logic-
apps/logic-apps-create-azure-resource-manager-templates

Deploy Logic App Templates https://docs.microsoft.com/en-us/azure/logic-
apps/logic-apps-deploy-azure-resource-manager-templates

SKILL 5.2: IMPLEMENT API
MANAGEMENT

Most of the applications and solutions that you can find
or develop nowadays offer an API for accessing the
features available in the solution. In business
environments, it is quite usual that those solutions need
to communicate with each other using their respective
APIs. Sometimes, you need to expose your solutions to
your clients to offer your services. In those situations,
you need to ensure that you offer a consistent and secure
API. Implementing the necessary mechanism for

https://docs.microsoft.com/en-us/azure/logic-apps/logic-apps-create-azure-resource-manager-templates
https://docs.microsoft.com/en-us/azure/logic-apps/logic-apps-deploy-azure-resource-manager-templates

achieving an enterprise-grade level of security,
consistency, and flexibility is not easy. If you also need to
publish several of your services under a common API,
this task is even harder.

Microsoft provides the Azure API Management (APIM)
service. This service allows you to create an enterprise-
grade API for your existing back-end services. Using
APIM, you can securely publish your back-end
applications, providing your customers with a platform
protected against DOS attacks or JWT token validations.

This skill covers how to

Create an APIM instance

Configure authentication for APIs

Define policies for APIs

Create an APIM instance

The API Management service allows you to expose a
portion (or all) of the APIs offered by your back-end
systems. By using the APIM service, you can unify all
your back-end APIs in a common interface that you can
offer to external users, such as clients or partners, and
internal or external developers. In general, the APIM
service is a façade of the APIs that you configure in your
APIM instance. Thanks to this façade feature, you can
customize the front-end API offered by the APIM
instance without changing the back-end API.

When exposing your back-end systems, you are not
limited to REST API back ends. You can use a back-end
service that uses a SOAP API and then publish this SOAP
API as a REST API. This means you can update your
older back-end systems without needing to modify the
code and take advantage of the greater level of
integration of the REST APIs.

Use the following procedure to create a new APIM
instance:

1. Open the Azure portal (https://portal.azure.com).

2. Click Create A Resource at the top of the Azure portal.

3. On the New blade, click Integration in the Azure Marketplace column.

4. Click API Management in the Featured column. If the API Management
service doesn’t appear in the Featured column, you can use the Search
The Marketplace text box and look for the API Management service.

5. On the API Management Service blade, type a name for your new APIM
instance.

6. Select a subscription from the Subscription drop-down menu.

7. Select a resource group from the Resource Group drop-down menu.
Alternatively, you can create a new one by clicking the Create New link
below the drop-down menu.

8. Select a location from the Location drop-down menu.

9. In the Organization Name text box, type the name of your organization.
This name appears on the developer’s portal and email notifications.

10. In the Administrator Email, type the name of the email account that
should receive all notifications from the APIM instance. By default, the
value associated with this property is the email address of the logged-in
user.

11. In the Pricing Tier, leave the Developer tier selected.

12. Click the Create button at the bottom of the blade. The process of
creating the APIM instance takes several minutes. When your new
APIM instance is ready, you receive a welcome email at the
administrator email address that you configured in step 10.

Note Pricing Tiers
The Developer pricing tier is appropriate for testing and development environments, but
you should not use it for production because the Developer tier does not offer high-
availability features and can be affected by disconnections during the updates of the
node. You can review the full offer and the features available on each tier at
https://azure.microsoft.com/en-us/pricing/details/api-management/.

Once you have created your APIM instance, you can start
adding APIs to your instance. In the following procedure,
you are going to add two APIs. You are going to take
advantage of the API that you created in the section
“Create A Custom Connector For Logic Apps” previously
in this chapter. For the second API, you are going to
create a blank API definition and add only those
methods that are appropriate for you.

1. Open the Azure portal (https://portal.azure.com).

https://portal.azure.com/
https://azure.microsoft.com/en-us/pricing/details/api-management/
https://portal.azure.com/

2. Type the name of your APIM instance in the Search text box at the top
of the portal.

3. Click the name your APIM instance in the results list.

4. Click APIs on the navigation menu on your APIM instance blade.

5. On the Add A New API blade, click OpenAPI.

6. On the Create From OpenAPI Specification dialog box, shown in Figure
5-10, in the OpenAPI Specification text box, type the URL of the
Swagger definition of the API that you published in Azure in the section
“Create a custom connector for Logic Apps.” Remember that the URL
should be similar to
https://<your_app_service_name>.azurewebsites.net/swagger/docs
/v1.

Figure 5-10 Adding a back-end API to an APIM instance

7. Ensure that Azure automatically fills the Display Name and Name
properties text boxes. This means that Azure was able to import the
details of your API successfully.

8. Delete the content of the Display Name text box.

9. Type Library in the Display Name text box.

10. Ensure that the Name text box has the value library.

11. Type library in the API URL Suffix field. If you are going to connect
more than one back-end API to the APIM instance, you need to provide
a suffix for each API. The APIM instance uses this suffix for
differentiating between the different APIs that you connected to the
instance.

12. Click the Create button at the bottom of the dialog box.

At this point, you have added your first back-end API to
the APIM instance by using the OpenAPI specification of
your back-end API. In the following steps, you are going
to add a back-end API without using any specification.
Creating the front-end endpoints is useful if you need to
connect only a few endpoints from your back-end API or
if you don’t have the OpenAPI or SOAP specification of
your API in any format:

1. Click APIs on the navigation menu in your APIM instance blade.

2. On the APIs blade, click Add API.

3. On the Add A New API page, click Blank API.

4. On the Create A Blank API dialog box, type Fake API in the Display
Name text box.

5. Leave the Name property with the default value.

6. Type https://fakerestapi.azurewebsites.net in the Web Service
URL text box.

7. Type fakeapi in the API URL Suffix text box.

8. Click the Create button.

9. On the Design tab of the API blade with the newly added Fake API
selected, click Add Operation.

10. On the Add Operation editor, shown in Figure 5-11, type GetActivities
in the Display Name text box.

Figure 5-11 Adding an API operation to an API in an APIM instance

11. In the URL HTTP Method drop-down menu, ensure that the GET
method is selected.

12. In the URL text box, type /api/activities.

13. Click the Save button at the bottom of the editor.

14. On the API blade, ensure that Fake API is selected.

15. Click the Test tab.

16. Click the GetActivities operation.

17. Click the Send button at the bottom of the GetActivities operation panel.
Using this panel, you can test each of the operations that are defined in
your API.

At this point, you have two back-end APIs connected to
your APIM instance. As you can see in the previous
example, you don’t need to expose the entire back-end
API. By adding the appropriate operations, you can
publish only those parts of the back-end API that are
useful for you. Once you have created the APIs in your
APIM instance, you can grant access to these APIs to

https://fakerestapi.azurewebsites.net/

your developers by using the Developer portal. You can
access the APIM Developer portal by using the URL
https://<your_APIM_name>.developer.azure-api.net/.

Need More Review? Azure Api Management Developer Portal
The Azure API Management developer portal allows you to provide your customers
and third parties that want to integrate with your API with a single point of contact for
requesting access to your application and providing documentation about your API.
You can read more about how to customize the developer experience by reviewing the
following article at https://docs.microsoft.com/en-us/azure/api-management/api-
management-howto-developer-portal.

Bear in mind that you need to associate a product to your
API for publishing it. Because you didn’t associate your
APIs to any product, your APIs won’t be available to the
external world. You can associate an API to more than
one product. By default, Azure provides two products:
Starter and Unlimited. These products are associated
with the Echo API demo that Azure automatically
deploys when you create your API Management instance.
Use the following procedure to create a product and
associate it with your APIs:

1. Open the Azure portal (https://portal.azure.com).

2. Type the name of your APIM instance in the Search text box on the top-
middle of the portal.

3. Click the name of your APIM instance in the results list.

4. Click Products on the navigation menu in your APIM instance blade.

5. Click the Add button on the top-left corner of the Products blade.

6. Type a Name in the Display Name text box on the Add Product panel.

7. Leave the value in the ID text box as is.

8. Type a description in the Description text area.

9. Select the Published value in the State switch control. If you don’t select
this option at this time, you can publish later, or you can publish the
Product using its panel.

10. Click the Select API button in the APIs section.

11. On the APIs blade, select Library and Fake APIs by clicking the check
box beside the name of the API.

12. Click the Select button at the bottom of the panel.

13. Click the Create button at the bottom of the Add Product panel.

By default, when you create a new product, only
members of the Administrators built-in group can access

https://docs.microsoft.com/en-us/azure/api-management/api-management-howto-developer-portal
https://portal.azure.com/

the product. You can configure this by using the Access
Control section in the product.

Need More Review? Revisions and Versions
During the lifetime of your API, you may need to make modifications by adding,
updating, or removing operations to your API. You can make these modifications
without disrupting the usage of your API by using revisions and versions. You can
review how to work with revisions and versions in your API by reading the article at
https://azure.microsoft.com/es-es/blog/versions-revisions/.

Configure authentication for APIs

Once you have imported your back-end APIs, you need
to configure the authentication for accessing these APIs.
When you configure the security options in the APIM
instance, the back-end API delegates the security to the
APIM instance. This means that even your API has
implemented its own authentication mechanism, it is
never used when the API is accessed through the APIM
instance.

This ability to hide the authentication of the back-end
APIs is useful for unifying all the security using a
consistent and unique authentication mechanism. You
can manage the authentication options associated with a
product or API by using subscriptions. A subscription
manages the keys that a developer can use for accessing
your API. If an HTTP request made to an API protected
by a subscription does not provide a valid subscription
key, the request is immediately rejected by the APIM
gateway without reaching your back-end API. When you
define a subscription, you can use three different scopes
for applying it:

Product The developer can access all the APIs configured in the
product assigned to the subscription. Traditionally, the developer
could request access to products by using the Developer portal.
This is no longer a valid option. You need to provide access to the
developer using the Azure portal and configure the appropriate
APIM subscription.

All APIs The developer can access all APIs in your APIM instance
using the same subscription key.

API The developer can access a single API in your APIM instance
using a subscription key. There is no need for the API to be part of

https://azure.microsoft.com/es-es/blog/versions-revisions/

a product.

If you use the All APIs scope, you don’t need to associate
the back-end API with an API. The Subscription using
this scope allows access directly to all the APIs
configured in your API Management instance. You can
use the following procedure for creating a subscription
and associating it with a program:

1. Open the Azure portal (https://portal.azure.com).

2. Type the name of your APIM instance in the Search text box at the top
of the portal.

3. Click the name your APIM instance in the results list.

4. Click Subscriptions in the navigation menu in your APIM instance
blade.

5. Click the Add Subscription button in the top-left corner of the
Subscriptions blade.

6. On the New Subscription panel shown in Figure 5-12, type a Name for
the subscription. Beware that this name can only contain letters,
numbers, and hyphens.

Figure 5-12 Creating a new API Management Subscription

7. In the Scope drop-down menu, select the Product value.

8. Click the Product property.

https://portal.azure.com/

9. In the Products panel, click the name of the product that you created in
the previous section.

10. Click the Select button at the bottom of the panel.

11. Click the Save button at the bottom of the panel.

12. On the Subscription blade, click the ellipsis at the end of the row for
your newly created subscription.

13. On the contextual menu, click Show/Hide keys. You can use either of
these keys to access the APIs configured in the product associated with
the Subscription. You need to use the Header Ocp-Apim-Subscription-
Key for providing the subscription key in your HTTP requests.

When you are configuring a subscription, you can assign
different users to the subscription by using the Users
parameters in the New Subscription panel. This is a best
practice way of providing different subscription keys to
different groups of users.

Need More Review? Other Authentication Methods
Using subscription and subscription keys is not the only mechanism for protecting
access to your APIs. API Management allows you to use OAuth 2.0, client certificates,
and IP whitelisting. You can use the following articles to review how to use other
authentication mechanisms for protecting your APIs:

IP whitelisting https://docs.microsoft.com/en-us/azure/api-management/api-
management-access-restriction-policies#RestrictCallerIPs

OAuth 2.0 authentication using Azure AD https://docs.microsoft.com/en-
us/azure/api-management/api-management-howto-protect-backend-with-aad

Mutual authentication using client certificates
https://docs.microsoft.com/en-us/azure/api-management/api-management-
howto-mutual-certificates

Define policies for APIs

When you publish a back-end API using the API
Management service, all the requests made to your APIM
instance are forwarded to the correct back-end API, and
the response is sent back to the requestor. None of these
requests or responses are altered or modified by default,
but there could be some situations where you need to
modify some requests and/or responses. An example of
these modification needs is transforming the format of a
response from XML to JSON. Another example could be
throttling the number of incoming calls from a particular
IP or user.

https://docs.microsoft.com/en-us/azure/api-management/api-management-access-restriction-policies#RestrictCallerIPs
https://docs.microsoft.com/en-us/azure/api-management/api-management-howto-protect-backend-with-aad
https://docs.microsoft.com/en-us/azure/api-management/api-management-howto-mutual-certificates

A policy is a mechanism that you can use to change the
default behavior of the APIM gateway. Policies are XML
documents that describe a sequence of inbound and
outbound steps or statements. Each policy is made of
four sections:

Inbound In this section, you can find any statement that applies
to requests from the managed API clients.

Back End This section contains the steps that need to be applied
to the request that should be sent from the API gateway to the
back-end API.

Outbound This section contains statements or modifications that
you need to apply to the response before it’s sent to the requestor.

On-Error In case there is an error on any of the other sections,
the engine stops processing the remaining steps on the faulty
section and jumps to this section.

When you are configuring or defining a policy, you need
to bear in mind that you can apply it different scope
levels:

Global The policy applies to all APIs in your APIM instance. You
can configure global policies by using the code editor on the All
APIs policy editor in the APIs blade of your APIM instance.

Product The policy applies to all APIs associated with a product.
You can configure product policies on the Policies blade of the
product in your API instance.

API The policy applies to all operations configured in the API. You
can configure API-scoped policies by using the code editor in the
All Operations option on the Design Tab of the API in your APIM
instance.

Operation The policy applies only to a specific operation in your
API. You can configure operation-scoped policies by using the
code editor in the specific operation.

Policies are a powerful and very flexible mechanism that
allows you to do a lot of useful work, such as applying
caching to the HTTP requests, performing monitoring on
the request and responses, authenticating with your
back-end API using different authentication
mechanisms, or even interacting with external services,
among others. Use the following procedure to apply
some transformations to the Library API that you

configured in the “Create an APIM instance” section
earlier in this chapter:

1. Open the Azure portal (https://portal.azure.com).

2. Type the name of your APIM instance in the Search text box at the top
of the portal.

3. Click the name of your APIM instance in the results list.

4. Click APIs on the navigation menu in your APIM instance blade.

5. Click Library API in the APIs blade.

6. Click the Get Books operation.

7. Click the Test tab.

8. Click the Send button at the bottom of the tab. This should send a
request to the Library API and get results similar to those shown in
Figure 5-13. In this procedure, you are going to transform the HTTP
headers inside the red rectangles in Figure 5-13. If you don’t see any
books when you execute this test, create some books using the Swagger
application of your API. You can review how to do this by consulting the
testing process of the Library API in the “Create a custom connector for
Logic Apps” section earlier in this chapter.

Figure 5-13 Testing an API operation

9. Click the Design tab.

10. Click All Operations in the list of available operations for this API.

11. Click the icon next to Policies in the Outbound Processing section.

12. In the Policy Editor, move the cursor inside the Outbound section,
before the base tag, and add a new line by pressing the Enter key.

https://portal.azure.com/

13. Click the Show Snippets button in the top-right corner of the Policy
Editor.

14. In the list of available policies on the right side of the Policy Editor,
navigate to Transformation Policies.

15. Click the Set HTTP Header policy twice to insert the policies.

16. Modify the inserted policies with the following content:

Click here to view code image

<set-header name="X-Powered-By" exists-
action="delete" />
<set-header name="X-AspNet-Version" exists-
action="delete" />

17. Add a new line below the inserted policies.

18. Add the following code snippet:

Click here to view code image

<set-body>@{
 var response =
context.Response.Body.As<string>();
 var arrayString = "{ \"Library\": " +
response + "}";
 JObject books = JObject.Parse(arrayString);
 JArray modifiedBooks = new JArray();
 foreach (JObject book in
books["Library"].ToObject<JArray>())
 {
 book.Add("URL",
"https://az204books.azure-
api.net/library/books/" + book["Id"]);
 modifiedBooks.Add(book);
 }
 return
(string)modifiedBooks.ToString(Newtonsoft.Json.Formatting.None);

 }</set-body>

19. Click the Save button at the bottom of the Policy Editor.

20. Repeat steps 6 to 8 to apply the transformation policies. You should
notice that headers X-Powered-By and X-AspNet-Version are missing.
Also, you should see that all books have an additional property URL
pointing to the URL of the book.

As you can see in the previous example, the policies in
the API Management service are compelling. You can
even use C# code for making elaborate modifications to
the requests and responses made to your API. Although
this example shows part of the power of using policies

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch05_images.xhtml#pg277-1a
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch05_images.xhtml#pg277-2a

with the APIM service, you should not use this example
for a production environment, as some critical
verifications are missing from this example policy.
Because we created this policy for All Operations in the
Library API, any call made to an operation different from
Get Books is going to fail.

Need More Review? More about Policies
There are a lot of useful things that you can do using policies—too many to cover in
this section. If you want to learn more about APIM policies, you can review the
following articles:

Error handling in API Management https://docs.microsoft.com/en-
us/azure/api-management/api-management-error-handling-policies

How to Set or Edit Azure API Management Policies
https://docs.microsoft.com/en-us/azure/api-management/set-edit-policies

Debug Your APIs Using Request Tracing https://docs.microsoft.com/es-
es/azure/api-management/api-management-howto-api-inspector

SKILL 5.3: DEVELOP EVENT-BASED
SOLUTIONS

One of the main principles of code development is to
reuse as much as possible. To make it possible to reuse
the code, you need to ensure that the code is as loosely
coupled as possible, which reduces the dependencies
with other parts of the code or other systems to a
minimum.

With this principle in mind, to make loosely coupled
systems communicate, you need to use a kind of
communication. Event-driven architectures allow
communication between separate systems by sharing
information through events.

In general, an event is a significant change in the system
state that happens in the context of the system. An
example of an event could be when a user adds an item
to the shopping cart in an e-commerce application, or
when an IoT device collects the information from its
sensors.

https://docs.microsoft.com/en-us/azure/api-management/api-management-error-handling-policies
https://docs.microsoft.com/en-us/azure/api-management/set-edit-policies
https://docs.microsoft.com/es-es/azure/api-management/api-management-howto-api-inspector

Azure provides different services, like Event Grid,
notification hubs, or event hubs, to cover the different
needs when implementing Event-Driven architectures.

This skill covers how to

Implement solutions that use Azure Event Grid

Implement solutions that use Azure Notification Hubs

Implement solutions that use Azure Event Hub

Implement solutions that use Azure Event Grid

Azure Event Grid allows you to create an application
using serverless architecture by providing a confident
platform for managing events. You can use Azure Event
Grid for connecting to several types of data sources, like
Azure Blob Storage, Azure Subscription, Event Hubs, IoT
Hubs, and others; Azure Even Grid also allows you to use
different event handlers to manage these events. You can
also create your custom events for integrating your
application with the Azure Event Grid. Before you can
start using the Azure Event Grid in your solution, there
are some basic concepts that we should review:

Event This is a change of state in the source (for example, in an
Azure Blob Storage or when an event happens when a new blob is
added to the Azure Blob Storage).

Event source This is the service or application when the event
happens. There is an event source for every event type.

Event handler This is the app or service that reacts to the event.

Topics These are the endpoints where the event source can send
the events. You can use topics for grouping several related events.

Event subscriptions When a new event is added to a topic, that
event can be processed by one or more event handlers. The event
subscription is an endpoint or built-in mechanism to distribute
the events between the different event handlers. Also, you can use
subscriptions to filter incoming events.

An important consideration that you need to bear in
mind is that an event does not contain the full
information about the event itself. The event only

contains information relevant to the event, such as the
source of the event, a time when the event took place,
and a unique identifier. For example, when a new blob is
added to an Azure Blob Storage Account, the new blob
event doesn’t contain the blob. Instead, the event
contains a reference to the blob in the Azure Blob
Storage Account.

When you need to work with events, you configure an
event source to send events to a topic. Any system, or
event handler, that needs to process those events
subscribes to that topic. When new events arise, the
event source pushes the event into the topic configured
in the Azure Event Grids service. Any event handler
subscribed to that topic reads the event and processes it
according to its internal programming. There is no need
for the event source to have event handlers
280subscribed to the topic; the event source pushes the
event to the topic and forgets it. The following steps
show how to create a custom topic. Then you are going to
create console applications using C# to send events to
the topic and process these events.

1. Open the Azure portal (https://portal.azure.com).

2. In the Search Resources, Services, And Docs text box on the top area of
the Azure portal, type event.

3. Click Event Grid Topic in the results list.

4. On the Event Grid Topics blade, click the Add button in the top-left
corner of the blade.

5. On the Create Topic panel, select a subscription in the Subscription
drop-down menu.

6. Select a resource group in the Resource Group drop-down menu.
Alternatively, you can create a new resource group by clicking the
Create New link below the drop-down menu.

7. In the Name text box, type a name for the Event Grid Topic.

8. Select a location in the Location drop-down menu.

9. Click the Review + Create button at the bottom of the panel.

10. Click the Create button.

When the Azure Resource Manager finishes creating
your new Event Grid Topic, you can subscribe to the

https://portal.azure.com/

topic for processing the events. Also, you can send your
custom events to this topic. Use the following steps to
publish custom events to your newly created Event Grid
Topic:

1. Open Visual Studio 2019.

2. On the start window, click Create A New Project.

3. On the Create A New Project window, select the template Console App
(.NET Core).

4. Click the Next button at the bottom-right corner of the window.

5. Type a Project Name.

6. Select a location for your solution.

7. Click the Create button.

8. Click Tools > NuGet Package Manager > Manage NuGet Packages For
Solution.

9. On the NuGet – Solution tab, click Browse.

10. In the Search text box, type Microsoft.Azure.EventGrid.

11. Click Microsoft.Azure.EventGrid in the results list.

12. On the right side of the NuGet – Solution tab, click the check box next
to the name of your project.

13. Click the Install button.

14. On the Preview Changes window, click the OK button.

15. In the License Acceptance window, click the I Accept button.

16. Repeat steps 10 to 15 and install the
Microsoft.Extensions.Configuration.Json NuGet Package.

17. In the Solution Explorer window, right-click your project’s name.

18. On the contextual menu, click Add > New Item.

19. On the Add New Item, type json in the Search text box.

20. Click the JSON File template.

21. Type appsettings.json in the Name text box.

22. Click the Add button at the bottom-right corner of the window.

23. On the Solution Explorer window, click the appsettings.json file.

24. On the properties window, set the Copy To Output Directory setting to
Copy Always.

25. Open the appsettings.json file and replace the content of the file with
the content of Listing 5-6. You can get the access key from the Access
Key blade in your Event Grid Topic.

Listing 5-6 appsettings.json file

Click here to view code image

{
 "EventGridAccessKey": "<Your_EventGridTopic_Acce

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch05_images.xhtml#lis5-6a

26. On the Solution Explorer window, right-click your project’s name.

27. On the contextual menu, click Add > New Item.

28. In the Add New Item window, select Class from the list of new items.

29. In the name text box at the bottom of the window, type
NewItemCreatedEvent.cs.

30. Click the Add button at the bottom-right corner of the window.

31. Replace the content of the NewItemCreatedEvent.cs file with the
content of Listing 5-7.

Listing 5-7 NewItemCreatedEvent.cs

Click here to view code image

// C# .NET
using Newtonsoft.Json;

namespace <your_project_name>
{
 class NewItemCreatedEvent
 {
 [JsonProperty(PropertyName = "name")]
 public string itemName;
 }
}

32. Open the Program.cs file.

33. Add the following using statements:

Click here to view code image

using Microsoft.Azure.EventGrid;
using Microsoft.Azure.EventGrid.Models;
using Microsoft.Extensions.Configuration;
using System.Collections.Generic;

34. Replace the content of the Main method with the content in Listing 5-8.

Listing 5-8 Program.cs Main method

Click here to view code image

 "EventGridTopicEndpoint": "https://<Your_EventGr
 azure.net/api/events"
}

// C# .NET
IConfigurationBuilder builder = new ConfigurationBuil
json");
IConfigurationRoot configuration = builder.Build();

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch05_images.xhtml#lis5-7a
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch05_images.xhtml#pg282a
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch05_images.xhtml#lis5-8a

At this point, your console application publishes events
to the Event Grid topic that you previously created. Press
F5 to run your console application to ensure that
everything compiles and works correctly; you will not be
able to see the published message yet. Use the following
steps to create a subscriber Azure Function that connects
to the Event Grid Topic and processes these events:

1. Open Visual Studio 2019.

2. In the start window, click Create A New Project.

3. On the Create A New Project window, click the template Azure
Functions.

4. Click Next.

5. Type a Project Name.

6. Select a location for your project.

7. Click Create.

8. On the Create A New Azure Functions Application window, click the
Event Grid Trigger.

9. In the Storage Account drop-down menu on the right side of the
window, click Browse.

string topicEndpoint = configuration["EventGridTopicE
string apiKey = configuration["EventGridAccessKey"];

string topicHostname = new Uri(topicEndpoint).Host;
TopicCredentials topicCredentials = new TopicCredenti
EventGridClient client = new EventGridClient(topicCre

List<EventGridEvent> events = new List<EventGridEvent
events.Add(new EventGridEvent()
{
 Id = Guid.NewGuid().ToString(),
 EventType = "MyCompany.Items.NewItemCreated",
 Data = new NewItemCreatedEvent()
 {
 itemName = "Item 1"
 },
 EventTime = DateTime.Now,
 Subject = "Store A",
 DataVersion = "3.7"
});

client.PublishEventsAsync(topicHostname, events).GetA
Console.WriteLine("Events published to the Event Grid
Console.ReadLine();

10. In the Azure Storage window, select an Azure Storage Account from
your subscription for using with the Azure Function. Alternatively, you
can create a new Azure Storage Account by clicking the Create A Storage
Account link at the bottom of the window.

11. Click the Add button.

12. Click Create.

13. Create a new empty C# class called NewItemCreatedEventData.

14. Replace the content of the NewItemCreatedEventData.cs file with
the content of Listing 5-9.

Listing 5-9 NewItemCreatedEvent.cs

Click here to view code image

// C# .NET
using Newtonsoft.Json;

namespace <your_project_name>
{
 class NewItemCreatedEvent
 {
 [JsonProperty(PropertyName = "name")]
 public string itemName;
 }
}

15. Replace the content of Function1.cs with the content in Listing 5-10.

Listing 5-10 Function1.cs

Click here to view code image

// C# .NET
using Microsoft.Azure.WebJobs;
using Microsoft.Azure.EventGrid.Models;
using Microsoft.Azure.WebJobs.Extensions.EventGrid
using Microsoft.Extensions.Logging;

using Newtonsoft.Json.Linq;

namespace <your_project_name>
{
 public static class Function1
 {
 [FunctionName("EventGridTrigger")]
 public static void Run([EventGridTrigger]E
 ILogger log)
 {
 log.LogInformation("C# Event Grid trri

 log.LogInformation($"New event receive

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch05_images.xhtml#lis5-9a
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch05_images.xhtml#lis5-10a

16. Publish the Azure Function to your Azure Subscription. Use the
procedure at the following URL to publish an Azure Function to Azure:
https://docs.microsoft.com/en-us/azure/azure-functions/functions-
develop-vs#publish-to-azure.

17. Open your Event Grid Topic in the Azure portal.

18. On your Event Grid Topic Overview blade, click the Event Subscription
button.

19. On the Create Event Subscription blade, shown in Figure 5-14, type a
Name for the subscription.

Figure 5-14 Creating a subscription using a WebHook endpoint

20. In the Endpoint Type drop-down menu, select Azure Function.

 if (eventGridEvent.Data is StorageBlob
 {
 var eventData = (StorageBlobCreate
 log.LogInformation($"Got BlobCreat
 Url}");
 }
 else if (eventGridEvent.EventType.Equa
 {
 NewItemCreatedEventData eventData
 ToObject< NewItemCreatedEventData
 log.LogInformation($"New Item Cust
 itemName}");
 }
 }
 }
}

https://docs.microsoft.com/en-us/azure/azure-functions/functions-develop-vs#publish-to-azure

21. Click the Select An Endpoint link below the Azure Function endpoint
type.

22. On the Select Azure Function panel, in the Function App drop-down
menu, select the Azure Function that you published previously in this
section.

23. Leave the Slot drop-down menu with the Production value.

24. Ensure that your Azure Function’s name appears in the Function drop-
down menu.

25. Click the Confirm Selection button.

26. Click the Create button.

At this point, you should be able to publish and process
events using the Event Grid Topic that you created
previously. Use the following steps to ensure that
everything works correctly:

1. Open the publisher console application in Visual Studio 2019.

2. Run the console application to publish an event to the topic.

3. Open the Azure portal and navigate to your Azure Function.

4. In the Azure Functions blade, click Monitor in the tree control.

5. In the Monitor blade, click the Configure button for configuring the
Application Insights integration. You need this integration for being
able to capture invocation logs.

6. On the Application Insights blade, leave the Create New Resource
option selected. Alternatively, you can use an existing Application
Insights instance by using the option Select Existing Resource.

7. Click the OK button.

8. You should be able to see a list of invocations when the function has
been called because a new event arrived at the Event Grid Topic.

9. Click one of the successful invocations; you will get a result similar to
Figure 5-15.

Figure 5-15 Log messages from a successful event
processing

Note Azure Function Monitoring
You need to have Application Insight integration enabled to be able to see the log
messages generated from the Azure Function. Review the article about how to monitor
Azure Functions using Application Insights at https://docs.microsoft.com/en-
us/azure/azure-functions/functions-monitoring.

The Azure Function that we used in this example can
manage not only custom events but also events from an
Azure Storage Account. As an exercise, you can create a
new subscription that listens only to Azure Storage
Account events and uses the Azure Function that you
published previously in this section to manage the events
produced by the Azure Storage Account.

Another important consideration that you need to deal
with when you add a handler to an Azure Event Grid
subscription is the handler validation. Depending on the
type of handler that you use, this validation process is
performed automatically by the SDK, or you need to
implement it manually. When you use an HTTP endpoint
as an event handler, you need to deal with the
subscription verification. This verification process
consists of a verification code sent by the Event Grid
service to the webhook endpoint. Your application needs
to reply to the Event Grid service by using the same
verification code. You can find a detailed example of how
to perform this verification by reviewing the code
available at https://github.com/Azure-Samples/azure-
event-grid-viewer.

Need More Review? Dead Letter and Retry Policies
When you work with event-driven architectures, there can be situations when the event
cannot deliver to the event handler. In those situations, it’s appropriate to set a retry
strategy to try to recover the event before it expires. You can learn more about these
retry policies and dead letter management at https://docs.microsoft.com/en-
us/azure/event-grid/manage-event-delivery.

 Exam Tip

https://docs.microsoft.com/en-us/azure/azure-functions/functions-monitoring
https://github.com/Azure-Samples/azure-event-grid-viewer
https://docs.microsoft.com/en-us/azure/event-grid/manage-event-delivery

Event Grid is one of the services that Azure
provides for exchanging information between
different systems. These systems publish and
consume events from the Event Grid, allowing
you to decouple the different elements of your
architecture. Ensure that you fully understand
the role each element plays in the exchange of
information using Event Grid.

Implement solutions that use Azure Notification
Hubs

Developing applications that can be accessed using
mobile devices can be challenging because you usually
need to allow access to your application from different
mobile platforms. The challenge becomes even bigger
because different mobile platforms use different
notification systems to send events. You need to deal
with the Apple Push Notification Service (APNS), Google
Firebase Cloud Messaging (FCM), or Windows
Notification Service (WNS), and these are just the
leading mobile platforms on the market. There are many
other mobile platforms that you can use for pushing
notifications to your mobile app.

The Azure Notification Hubs provide an abstraction layer
that you can use for connecting to different push
notification mobile platforms. Thanks to this abstraction,
you can send the notification message to the Notification
Hub, which manages the message and delivers it to the
appropriate platform. You can also define and use cross-
platform templates. Using these templates, you ensure
that your solution sends consistent messages
independently of the mobile platform that you are using.

When you develop a mobile app, there is a high
probability that you need to send information to your
users when they are not using the app. In doing so, you
use the well-known push notifications. This
asynchronous communication mechanism allows you to

interact with your users when they are offline. For
making this interaction happens, some key players are
part of this asynchronous communication:

The mobile app client This is your actual mobile app, which
runs on your user’s device. The user must register with the
Platform Notification System (PNS) to receive notifications. This
generates a PNS handler that is stored in the mobile app back end
for sending notifications.

The mobile app back end This is the back end for your app
client, and it stores the PNS handler that the client received from
the PNS. Using this handler, your back-end service can send push
notifications to all registered users.

A Platform Notification System (PNS) These platforms
deliver the actual notification to the user’s device. PNSes are
platform-dependent, and each vendor has its own PNS. Apple has
the Apple Push Notification Service, Google uses the Firebase
Cloud Messaging, and Microsoft uses the Windows Notification
Service.

Even if your mobile app is targeted to a single platform,
implementing push notifications requires a good amount
of effort. This is because some Platform Notification
Systems only focus on delivering the notification to the
user’s device but don't deal with requirements like
targeted notifications or broadcasting notifications.
Another requirement for most PNSes is that device
tokens need to be refreshed every time you release a new
version of your app. This operation requires that your
back end deals with a large amount of traffic and
database updates simply to keep device tokes updated. If
you need to support different mobile platforms, these
tasks become even more complicated.

Microsoft provides you with the Azure Notification Hub.
This service provides cross-platform push notification to
your mobile app back end, allowing you to abstract from
the details of managing each Platform Notification
System to provide a consistent API for interacting with
the Notification Hub. When you need to add push
notifications to your mobile app, you integrate the
Notification Hub service with your back-end service

hosted on the Mobile App Service. Figure 5-16 shows the
workflow for sending push notifications to users using
the Notification Hub.

Figure 5-16 Push notification workflow using
Notification Hub

Note Notification Hub Integration
Microsoft also provides an SDK for easing the direct integration between your native
(iOS, Android, or Windows) or cross-platform (Xamarin or Cordoba) code and Azure
Notification Hub, without using your back end. The drawback of this approach is that
the Mobile Apps Client SDK removes all tags that you can associate with the device for
security purposes. If you need these tags for performing segmented notifications, you
should register your users’ devices using the back end .

The interaction between your back-end Mobile App and
Notification Hub is performed using the Mobile App
SDK for ASP.NET or Node.js web applications. Before
your back-end application can 289send push
notifications, you need to connect your App Service with
your Notification Hub. Use the following procedure to
make this connection:

1. Sign in to the Azure portal (http://portal.azure.com).

2. At the top of the portal, click Create A Resource.

3. On the New blade, in the Search the Marketplace text box, type
notification.

4. Click Notification Hub in the result list.

5. On the Notification Hub blade, click the Create button.

http://portal.azure.com/

6. On the Create Notification Hub blade, select your subscription in the
Subscription drop-down menu.

7. Select your resource group in the Resource Group drop-down menu.
Alternatively, you can create a new resource group by clicking the
Create New link.

8. Type a namespace in the Notification Hub Namespace text box. A
namespace is a group of one or more hubs.

9. Type a name in the Notification Hub text box.

10. Select the location of the notification hub in the Location drop-down
menu.

11. Leave the pricing tier as Free.

12. Click the Create button at the bottom of the blade.

13. Once the Notification Hub has been created, type the name of your new
Notification Hub in the Search Resources, Services, And Docs text box
at the top of the Azure portal.

14. At this point, you can configure the integration of the Notification Hub
with each Platform Notification System that you want to use for sending
notifications.

Now that you have your Notification Hub ready, you can
register your PNS with your Notification Hub and send
notifications to your mobile app. This step requires that
you have a developer account associated with the PNS
that you want to use. The following procedure shows how
to create an application in the Firebase console:

1. Open the Firebase console (https://console.firebase.google.com).

2. Click the Add Project button.

3. Type a name for your project.

4. Click the Continue button.

5. On the Google Analytics page, disable the Google Analytics For This
Project.

6. Click the Create Project button.

7. Once your project is ready, click the Continue button. This forwards you
to your project’s main page.

8. On your project’s main page, click the Android icon below the title Get
Started By Adding Firebase To Your App.

9. On the Add Firebase To Your Android App, type a package name. You
need this package name in the next example.

10. Click the Register App button.

11. Click the Download google-services.json button. You need this file later
in this section.

12. Click the Next button.

13. Click the Next button again.

https://console.firebase.google.com/

14. Click the Continue To Console button.

15. In the Console window, click the cog icon next to the Project Overview
on the navigation panel on the left side of the console.

16. On the contextual menu, click Project Settings.

17. Click the Cloud Messaging tab.

18. In the Project Credentials section, copy the token associated with the
Server Key. You need this in a later step.

19. Navigate to the Azure portal (https://portal.azure.com).

20. Type the name of your Notification Hub in the Search Resources,
Services, And Docs text box at the top of the Azure portal.

21. Click the Google (GCM/FCM) option in the Settings section on the
navigation menu on the left side of your Notification Hub blade.

22. Paste the Server Key that you copied on step 18 in the API Key text box.

23. Click the Save button.

At this point, you have configured your Notification Hub
for sending notifications to your Android application by
using Firebase. For the sake of brevity, I omit how to
program a mobile application for getting notifications
from the Notification Hub. You can find examples of how
to perform this notification management for each
platform by reviewing the following articles:

iOS https://docs.microsoft.com/en-us/azure/notification-
hubs/ios-sdk-204

Android https://docs.microsoft.com/en-us/azure/notification-
hubs/notification-hubs-android-push-notification-google-fcm-
get-started

Windows Universal https://docs.microsoft.com/en-
us/azure/notification-hubs/notification-hubs-windows-store-
dotnet-get-started-wns-push-notification

When you need to add push notification support to your
solution, you should think of the notification hub as a
part of a bigger architecture. An example of this could be
a solution that needs to connect your line-of-business
applications with a mobile application. In such a
scenario, a possible architecture could be to use Event
Grid topics. The line-of-business applications would be
the publishers of events to the appropriate topic, and
then you can deploy one or more Azure Apps Services
that are subscribed to these topics. When one of the line-

https://portal.azure.com/
https://docs.microsoft.com/en-us/azure/notification-hubs/ios-sdk-204
https://docs.microsoft.com/en-us/azure/notification-hubs/notification-hubs-android-push-notification-google-fcm-get-started
https://docs.microsoft.com/en-us/azure/notification-hubs/notification-hubs-windows-store-dotnet-get-started-wns-push-notification

of-business applications publishes an event in the Event
Grid topic, your Azure App Service, which is acting as an
event handler, can process the event and send a
notification to your mobile users by using the Azure
Notification Hub. Figure 5-17 shows a schema of this
architecture. As you can see in that figure, the key
component of the architecture is the Event Grid service
and the implementation of an event-driven architecture.

Figure 5-17 Diagram of event-driven architecture,
including notification hubs

Need More Review? Sample Architecture Implementation
You can review a sample architecture implementation using Service Bus messages
instead of Event Grid by reading the article at https://docs.microsoft.com/en-
us/azure/notification-hubs/notification-hubs-enterprise-push-notification-architecture.

Implement solutions that use Azure Event Hub

Azure Event Grid is an excellent service for
implementing event-driven solutions, but it is only one
piece of a more complex pipeline. Although Event Grid is
appropriate for working with event-driven, reactive
programming, It is not the best solution when you need
to ingest millions of events per second with low latency.

https://docs.microsoft.com/en-us/azure/notification-hubs/notification-hubs-enterprise-push-notification-architecture

Azure Event Hub is a more suitable solution when you
require a service that can receive and process millions of
events per second and provide low-latency event
processing. Azure Event Hub is the front door of a big
data pipeline that processes millions of events. Once the
Azure Event Hub receives the data, it can deliver the
event to Azure Event Grid, store the information in an
Azure Blob Storage Account, or store the data in an
Azure Data Lake Storage.

When you work with event hubs, you send events to the
hub. The entity that sends events to the event hub is
known as an event publisher. An event publisher can
send events to the event hub by using any of these
protocols: AMQP 1.0, Kafka 1.0 (or later), or HTTPS.

You can publish events to the event hub by sending a
single event or grouping several events in a batch
operation. Independently if you publish a single event or
a batch of them, you are limited to a maximum size of 1
MB of data per publication. When Azure Event Hub
stores an event, it distributes the different events in
different partitions based on the partition key provided
as one of the data of the event. Using this pattern, Azure
Event Hub ensures that all events sharing the same
partition key are delivered in order to the same partition.

A partition stores the events as they arrive at the
partition. This way, the newer events are added to the
end of the partition. You cannot delete events from a
partition. Instead, you need to wait for the event to
expire to be removed from the partition. As each
partition is independent of other partitions in the event
hub, the growth rates are different from partition to
partition. You can define the number of partitions that
your event hub contains during the creation of the event
hub. You can create between 2 and 32 partitions,
although you can extend the limit of 32 by contacting the
Azure Event Hub team. Bear in mind that once you

create the event hub and set the number of the
partitions, you cannot change this number later. When
planning the number of partitions to assign to the event
hub, consider the maximum number of parallels
downstream that need to connect to the event hub.

You can connect event receiver applications to an event
hub by using consumer groups. A consumer group is
equivalent to a downstream in a stream processing
architecture. Using consumer groups, you can have
different event receivers or consumers, accessing
different views (state, position, or offset) of the partitions
in the event hub. Event consumers connect to the event
hub by using the AMQP protocol that sends the event to
the client as soon as new data is available.

The following procedure shows how to create an Azure
Event Hub:

1. Open the Azure portal (https://portal.azure.com).

2. Expand the navigation menu by clicking the icon with three parallels
lines on the top-left corner of the Azure portal.

3. Click All Services on the navigation menu.

4. In the Search All text box, type event.

5. Click Event Hubs in the results list.

6. On the Event Hubs blade, click the Add button at the top-left corner of
the blade.

7. On the Create Namespace panel, ensure that the correct subscription is
selected in the Subscription drop-down menu.

8. Select a resource group from the Resource Group drop-down menu.
Alternatively, you can create a new resource group by clicking the
Create New link below the drop-down menu.

9. Type a name for the Event Hub namespace.

10. Select a location in the Location drop-down menu.

11. Select the Basic tier in the Pricing Tier drop-down menu.

12. Leave the Throughput Units as 1.

13. Click the Review + Create button at the bottom of the panel.

14. Click the Create button.

15. Navigate to your newly created Event Hub namespace.

16. On the Overview blade in the Event Hub namespace blade, click the
Event Hub button.

https://portal.azure.com/

17. On the Create Event Hub panel, type a Name for the Event Hub.

18. Leave the Partition Count at 2. Remember that you cannot change this
value once the event hub is created.

19. Click the Create button.

20. Click Shared Access Policies in the navigation menu on the left side of
the Event Hub namespace.

21. Click the RootManageSharedAccessKey.

22. Copy the Connection String-Primary Key value. You need this value for
step 9 in the next procedure.

Once you have created your event hub’s namespace and
your hub, you can start sending and consuming events
from the hub. Use the following procedure to create two
console applications, one for sending events and another
for receiving events:

1. Open Visual Studio 2019.

2. On the Welcome screen, click Create A New Project.

3. Select the Console App (.NET Core) template.

4. Click the Next button.

5. Type a Project Name.

6. Select a location for the project.

7. Click the Create button.

8. Install the Microsoft.Azure.EventHubs NuGet package.

9. Replace the content of the Program.cs file with the content of Listing 5-
11. You received the Event Hub Namespace connection string in the last
step of the previous procedure.

Listing 5-11 Function1.cs

Click here to view code image

// C# .NET
using System;
using System.Text;
using System.Threading.Tasks;
using Microsoft.Azure.EventHubs;

namespace <your_project_name>
{
 class Program
 {
 private static EventHubClient eventHubClient;
 private const string EventHubConnectionString
 namespace_connection_string>";
 private const string EventHubName = "<your_ev
 private const int numMessagesToSend = 100;

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch05_images.xhtml#lis5-11a

At this point, you can press F5 and run the console
application. This application console sends 100 messages
to the event hub that you configured in the
EventHubName constant. In the next procedure, you are
going to create another application console for
implementing an Event Processor Host. The Event
Processor Host is an agent that helps you receive events
from the event hub. The Event Processor automatically
manages the persistent checkpoints and parallel event

 static void Main(string[] args)
 {
 var connectionStringBuilder = new EventHu
 EventHubConnectionString)
 {
 EntityPath = EventHubName
 };

 eventHubClient = EventHubClient.CreateFro
 connectionStringBuilder.ToString());

 for (var i = 0; i < numMessagesToSend; i+
 {
 try
 {
 var message = $"Message {i}";
 Console.WriteLine($"Sending messa
 eventHubClient.SendAsync(new Even
 }
 catch (Exception exception)
 {
 Console.WriteLine($"{DateTime.Now
 }

 Task.Delay(10);
 }

 Console.WriteLine($"{numMessagesToSend} m

 eventHubClient.CloseAsync();

 Console.WriteLine("Press ENTER to exit.")
 Console.ReadLine();
 }
 }
}

reception. The Event Processor Host requires an Azure
Storage Account to process the persistent checkpoints.

Note Example Requirements
You need to create an Azure Blob Storage container to run this example. You can
review how to create a blob container and how to get the access key by reading the
following articles:

Create a container https://docs.microsoft.com/en-
us/azure/storage/blobs/storage-quickstart-blobs-portal#create-a-container

Get access keys https://docs.microsoft.com/en-
us/azure/storage/common/storage-account-manage#access-keys

Follow these steps to create the console application that
implements the Event Processor Host:

1. Open Visual Studio 2019.

2. On the Welcome screen, click Create A New Project.

3. Select the Console App (.NET Core) template.

4. Click the Next button.

5. Type a Project Name.

6. Select a location for the project.

7. Click the Create button.

8. Install the following NuGet packages:

1. Microsoft.Azure.EventHubs

2. Microsoft.Azure.EventHubs.Processor

9. Create a new empty C# class and name it SimpleEventProcessor. In
later steps, this class implements the IEventProcessor interface that
contains the signature of the methods needed for the Event Processor.

10. Replace the content of the SimpleEventProcessor.cs file with the
content of Listing 5-12.

Listing 5-12 SimpleEventProcessor.cs

Click here to view code image

// C# .NET
using Microsoft.Azure.EventHubs;
using Microsoft.Azure.EventHubs.Processor;
using System;
using System.Collections.Generic;
using System.Text;
using System.Threading.Tasks;

namespace <your_project_name>
{

https://docs.microsoft.com/en-us/azure/storage/blobs/storage-quickstart-blobs-portal#create-a-container
https://docs.microsoft.com/en-us/azure/storage/common/storage-account-manage#access-keys
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch05_images.xhtml#lis5-12a

11. Replace the content of the Program.cs file with the content of the
Listing 5-13.

Listing 5-13 Program.cs

Click here to view code image

 public class SimpleEventProcessor : IEventProc
 {
 public Task CloseAsync(PartitionContext co
 {
 Console.WriteLine($"Processor Shutting
 '{context.PartitionId}', Reason: '{rea
 return Task.CompletedTask;
 }

 public Task OpenAsync(PartitionContext con
 {
 Console.WriteLine($"SimpleEventProcess
 PartitionId}'");
 return Task.CompletedTask;
 }

 public Task ProcessErrorAsync(PartitionCon
 {
 Console.WriteLine($"Error on Partition
 {error.Message}");
 return Task.CompletedTask;
 }

 public Task ProcessEventsAsync(PartitionCo
 <EventData> messages)
 {
 foreach (var eventData in messages)
 {
 var data = Encoding.UTF8.GetString
 Body.Offset, eventData.Body.Count)
 Console.WriteLine($"Message receiv
 PartitionId}', Data: '{data}'");
 }

 return context.CheckpointAsync();
 }
 }
}

// C# .NET
using Microsoft.Azure.EventHubs;
using Microsoft.Azure.EventHubs.Processor;
using System;

namespace <your_project_name>

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch05_images.xhtml#lis5-13a

Now you can press F5 and run your console application.
The console application registers itself as an Event
Processor and starts waiting for events not processed in
the event hub. Because the default expiration time for
the events in the event hub is one day, you should receive
all the messages sent by your publishing console
application in the previous example. If you run your
event publisher console application without stopping the
event processor console application, you should be able
to see the messages in the event processor console

{
 class Program
 {
 private const string EventHubConnectionString
 "<your_event_hub_namespa
 private const string EventHubName = "<your_ev
 private const string StorageContainerName = "
 private const string StorageAccountName = "<y
 private const string StorageAccountKey = "<yo
 private static readonly string StorageConnect
 $"DefaultEndpo
 AccountName={S
 AccountKey={St

 static void Main(string[] args)
 {
 Console.WriteLine("Registering EventProce

 var eventProcessorHost = new EventProcess
 EventHubName,
 PartitionReceiver.DefaultConsumerGrou
 EventHubConnectionString,
 StorageConnectionString,
 StorageContainerName);

 // Registers the Event Processor Host and
 eventProcessorHost.RegisterEventProcessor

 Console.WriteLine("Receiving. Press ENTER
 Console.ReadLine();

 // Disposes of the Event Processor Host
 eventProcessorHost.UnregisterEventProcess
 }
 }
}

almost in real time as they are sent to the event hub by
the event publishing console. This simple example also
shows how the event hub distributes the events across
the different partitions.

 Exam Tip

The Azure Event Hub is a service appropriate for
processing huge amounts of events with low
latency. You should consider the event hub as
the starting point in an event processing
pipeline. You can use the event hub as the event
source of the Event Grid service.

Need More Review? Event Hubs Concepts
The Azure Event Hub service is designed to work with big data pipelines where you
need to process millions of events per second. In those scenarios, making a bad
decision when planning the deployment of an event hub can have a big effect on the
performance. You can learn more about the event hub service by reading the article at
https://docs.microsoft.com/en-in/azure/event-hubs/event-hubs-features.

SKILL 5.4: DEVELOP MESSAGE-BASED
SOLUTIONS

In the previous skill, we reviewed how to use event-
driven services in which a publisher pushes a lightweight
notification or event to the events management system
and forgets about how the event is handled or if it is even
processed.

In this section, we are going to review how to develop
message-based solutions using Azure services. In general
terms, a message is raw data produced by a service with
the goal of being stored or processed elsewhere. This
means that the publisher of the messages has an
expectation of some other system or subscriber process
the message. Because of this expectation, the subscriber

https://docs.microsoft.com/en-in/azure/event-hubs/event-hubs-features

needs to notify the publisher about the status of the
message.

This skill covers how to

Implement solutions that use Azure Service Bus

Implement solutions that use Azure Queue Storage queues

Implement solutions that use Azure Service Bus

Azure Service Bus is an enterprise-level integration
message broker that allows different applications to
communicate with each other in a reliable way. A
message is a raw data that an application sends
asynchronously to the broker to be processed by another
application connected to the broker. The message can
contain JSON, XML, or text information.

There are some concepts that you need to review before
starting to work with the Azure Service Bus:

Namespace Is a container for all the components of the
messaging. A single namespace can contain multiple queues and
topics. You can use namespaces as application containers
associating a single solution to a single namespace. The different
components of your solution connect to the topics and queues in
the namespace.

Queue A queue is the container of messages. The queue stores the
message until the receiving application retrieves and processes the
message. The message queue works as a FIFO (First-In, First-Out)
stack. As a new message arrives at the queue, the Service Bus
service assigns a timestamp to the message. Once the message is
processed, the message is held in redundant storage. Queues are
appropriate for point-to-point communication scenarios in which
a single application needs to communicate with another single
application.

Topic You use topics for sending and receiving messages. The
difference between queues and topics is that topics can have
several applications receiving messages used in publish/subscribe
scenarios. A topic can have multiple subscriptions in which each
subscription in a topic receives a copy of the message sent to the
topic.

Use the following procedure to create an Azure Service
Bus namespace; then, you can create a topic in the
namespace. We are going to use that topic to create two
console applications to send and receive the messages
from the topic:

1. Open the Azure portal (https://portal.azure.com).

2. Click Create A Resource at the top of the portal.

3. Click Integration in the Azure Marketplace column.

4. Click Service Bus in the Featured column.

5. On the Create Namespace panel, ensure that the correct subscription is
selected in the Subscription drop-down menu.

6. Select a resource group in the Resource Group drop-down menu.
Alternatively, you can create a new resource group by clicking the
Create New link below the drop-down menu control.

7. Type a name for the Service Bus in the Namespace Name text box.

8. Select a location in the Location drop-down menu.

9. Select the Standard tier in the Pricing Tier drop-down menu. You
cannot create topics in the Basic pricing tier; you need to use at least the
Standard tier.

10. Click the Review + Create button at the bottom of the panel.

11. Click the Create button.

12. Go to the resource once the Azure Resource Manager finishes the
deployment of your new Service Bus Namespace.

13. On the Overview blade in the Service Bus Namespace, click the Topic
button.

14. On the Create Topic panel, shown in Figure 5-18, type a Name for the
topic.

https://portal.azure.com/

Figure 5-18 Creating a new topic

15. Leave the Max Topic Size and Message Time To Live parameters as they
are.

16. Check Enable Duplicate Detection. This option ensures that the topic
doesn’t store duplicated messages during the configured detection
window.

17. Click the Create button.

18. Click Shared Access Policies on the navigation menu on the left side of
the Service Bus Namespace.

19. Click the RootManageSharedAccessKey policy.

20. Copy the Primary Connection String. You are going to use the
connection string later in this section.

21. Click Topics in the navigation menu on the left side of the Service Bus
Namespace.

22. Click your topic.

23. On the Overview blade on the Service Bus Topic, click the Subscription
button.

24. On the Create Subscription panel, shown in Figure 5-19, type a name for
the subscription.

Figure 5-19 Creating a new subscription

25. Type 10 in the Max Delivery Count text box. This is the number of
retries for delivering a message before moving the message to the Dead
Letter Queue.

26. Leave the other properties as they are.

27. Click the Create button at the bottom of the panel.

Now you are going to create two console applications.
One console application is going to publish messages to
the Service Bus Topic; the other console application is
going to subscribe to the Service Bus Topic, process the
message, and update the processed message. Use the
following procedure to create the console application
that publishes messages to the Service Bus Topic:

1. Open Visual Studio 2019.

2. On the Welcome screen, click Create A New Project.

3. Select the Console App (.NET Core) template.

4. Click Next.

5. Type a Project Name.

6. Select a location for the project.

7. Click Create.

8. Install the Microsoft.Azure.ServiceBus NuGet package

9. Replace the content of the Program.cs file with the content of Listing 5-
14. Remember that you copied the connection string needed for this
code in step 20 of the previous example.

Listing 5-14 Program.cs

Click here to view code image

// C# .NET
using Microsoft.Azure.ServiceBus;
using System;
using System.Text;

namespace <your_project_name>
{
 class Program
 {
 const string ServiceBusConnectionString =
 "<your_service_bus_connection_st
 const string TopicName = "<your_topic_name>";
 const int numberOfMessagesToSend = 100;

 static ITopicClient topicClient;

 static void Main(string[] args)
 {
 topicClient = new TopicClient(ServiceBusC

 Console.WriteLine("Press ENTER key to exi
 messages.");
 Console.WriteLine();

 // Send messages.
 try
 {
 for (var i = 0; i < numberOfMessagesT
 {
 // Create a new message to send t
 string messageBody = $"Message {i
 var message = new Message(Encodin

 // Write the body of the message
 Console.WriteLine($"Sending messa

 // Send the message to the topic.
 topicClient.SendAsync(message);
 }
 }
 catch (Exception exception)
 {

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch05_images.xhtml#lis5-14a

You can now press F5 and publish messages to the topic.
Once you publish the messages, you should be able to see
an increase in the Message Count column in the
Overview blade of your Service Bus Topic. The next steps
show how to create the second console application that
subscribes to the topic and processes the messages in the
topic:

1. Open Visual Studio 2019.

2. On the Start window, click Create A New Project.

3. Select the Console App (.NET Core) template.

4. Click Next.

5. Type a Project Name.

6. Select a location for the project.

7. Click Create.

8. Install the Microsoft.Azure.ServiceBus NuGet package.

9. Replace the content of the Program.cs file with the content of Listing 5-
15.

Listing 5-15 Program.cs

Click here to view code image

 Console.WriteLine($"{DateTime.Now} ::
 }
 Console.ReadKey();

 topicClient.CloseAsync();
 }
 }
}

// C# .NET
using Microsoft.Azure.ServiceBus;
using System;
using System.Text;
using System.Threading;
using System.Threading.Tasks;

namespace <your_project_name>
{
 class Program
 {
 const string ServiceBusConnectionString = "<y
 connection_string>";
 const string TopicName = "<your_topic_name>";

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch05_images.xhtml#lis5-15a

 const string SubscriptionName = "<your_subscr
 static ISubscriptionClient subscriptionClient

 static void Main(string[] args)
 {
 subscriptionClient = new SubscriptionClie
 TopicName, Subscript

 Console.WriteLine("Press ENTER key to exi
 messages.");

 // Configure the message handler options
 number of concurrent messages to deliver,
 var messageHandlerOptions = new MessageHa
 ExceptionRece
 {
 // Maximum number of concurrent calls
 // ProcessMessagesAsync(), set to 1 f
 // Set it according to how many messa
 // process in parallel.
 MaxConcurrentCalls = 1,

 // Indicates whether the message pump
 // the messages after returning from
 // False below indicates the user cal
 // operation as in ProcessMessagesAsy
 AutoComplete = false
 };

 // Register the function that processes m
 subscriptionClient.RegisterMessageHandler
 messageHandlerOptions);

 Console.ReadKey();

 subscriptionClient.CloseAsync();
 }

 static async Task ProcessMessagesAsync(Messag
 token)
 {
 // Process the message.
 Console.WriteLine($"Received message: Seq
 SystemProperties.SequenceNumber} Body:{En
 Body)}");

 // Complete the message so that it is not
 // This can be done only if the subscript
 // ReceiveMode.PeekLock mode (which is th
 await subscriptionClient.CompleteAsync(me
 // Note: Use the cancellationToken passed
 // subscriptionClient has already been cl
 // If subscriptionClient has already been
 // call CompleteAsync() or AbandonAsync()

You can now press F5 and run the console application.
As the console application processes the messages in the
topic, you can see that the count of the messages in the
subscription is decreasing.

Need More Review? Service Bus Advanced Features
You can learn more about Service Bus in the following articles:

Queues, Topics, and Subscriptions https://docs.microsoft.com/en-
us/azure/service-bus-messaging/service-bus-queues-topics-subscriptions

Service Bus Performance Improvements https://docs.microsoft.com/en-
us/azure/service-bus-messaging/service-bus-performance-improvements

Topic Filters and Actions https://docs.microsoft.com/en-us/azure/service-bus-
messaging/topic-filters

Implement solutions that use Azure Queue Storage
queues

Azure Queue Storage is the first service that Microsoft
released for managing message queues. Although Azure
Service Bus and Azure Queue Storage share some
features, such as providing message queue services,
Azure Queue Storage is more appropriate when your
application needs to store more than 80 GB of messages
in a queue. Another important feature of the Azure
Queue Storage service that you need to consider is

 // to avoid unnecessary exceptions.
 }

 // Use this handler to examine the exceptions
 static Task ExceptionReceivedHandler(Exceptio
 exceptionReceivedEventArgs)
 {
 Console.WriteLine($"Message handler encou
 {exceptionReceivedEventArgs.Exception}.")
 var context = exceptionReceivedEventArgs.
 Console.WriteLine("Exception context for
 Console.WriteLine($"- Endpoint: {context.
 Console.WriteLine($"- Entity Path: {conte
 Console.WriteLine($"- Executing Action: {
 return Task.CompletedTask;
 }
 }
}

https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-queues-topics-subscriptions
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-performance-improvements
https://docs.microsoft.com/en-us/azure/service-bus-messaging/topic-filters

although the queues in the service work as a FIFO (First-
In, First-Out) stack, the order of the message is not
guaranteed.

Note Azure Queue Storage vs. Azure Service Bus
You can review a complete list of differences between these two queuing services at
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-azure-and-
service-bus-queues-compared-contrasted.

The maximum size of a single message that you can send
to an Azure Queue is 64KB, although the total size of the
queue can grow to over 80GB. You can only access an
Azure Queue using the REST API or using the .NET
Azure Storage SDK. Here are the steps for creating an
Azure Queue Storage Account and a queue for sending
and receiving messages:

1. Open the Azure portal (https://portal.azure.com).

2. Click Create A Resource at the top of the portal.

3. Click Storage in the Azure Marketplace column.

4. Click Storage Account – Blob, File, Table, Queue in the Featured
column.

5. On the Create Storage Account blade, select a subscription in the
Subscription drop-down menu.

6. Select a resource group in the Resource Group drop-down menu.

7. Type a Storage Account Name.

8. Select a location in the Location drop-down menu.

9. Select Locally-Redundant Storage in the Replication drop-down menu.

10. Leave the other properties as is.

11. Click the Review + Create button.

12. Click the Create button.

13. Click the Go To Resource button once the deployment finishes.

14. Click Access Keys on the navigation menu in the Azure Storage account
blade.

15. Copy the Connection String from the key1 section. You need this value
later in this section.

At this point, you can create queues in your Azure
Storage account by using the Azure portal. You can also
add messages to the queue using the Azure portal. This
approach is useful for development or testing purposes,
but it is not suitable for applications. Use the following

https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-azure-and-service-bus-queues-compared-contrasted
https://portal.azure.com/

steps to create a console application that creates a new
queue in your Azure Storage Account. The application
also sends and reads messages from the queue:

1. On the Welcome screen, click Create A New Project.

2. Select the Console App (.NET Core) template.

3. Click Next.

4. Type a Project Name.

5. Select a location for the project.

6. Click Create.

7. Install the following NuGet packages:

1. Azure.Storage.Common

2. Azure.Storage.Queue

8. Replace the content of the Program.cs file with the content of Listing 5-
16.

Listing 5-16 Program.cs

Click here to view code image

// C# .NET
using Azure.Storage.Queues;
using Azure.Storage.Queues.Models;
using System;

namespace <your_project_name>
{
 class Program
 {
 private const string connectionString = "<you
 connection_string>";
 private const string queueName = "az204queue"
 private const int maxNumOfMessages = 10;
 static void Main(string[] args)
 {
 QueueClient queueClient = new QueueClient

 //Create the queue
 queueClient.CreateIfNotExists();

 //Sending messages to the queue.
 for (int i = 0; i < maxNumOfMessages; i++
 {
 queueClient.SendMessageAsync($"Messag
 }

 //Getting the length of the queue
 QueueProperties queueProperties = queueCl

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_jxzjhj/stomtk_pdf_out/OEBPS/Images/ch05_images.xhtml#lis5-16a

Press F5 to execute the console application that sends
and reads messages from the queue. You can see how the
messages are added to the queue by using the Azure
portal and navigating to your Azure Storage account >
Queues > az204queue. You should see a queue similar to
one shown in Figure 5-20.

 int? cachedMessageCount = queueProperties

 //Reading messages from the queue without
 Console.WriteLine("Reading message from t
 from the queue");
 PeekedMessage[] peekedMessages = queueCli
 cachedMessageCount);

 foreach (PeekedMessage peekedMessage in p
 {
 Console.WriteLine($"Message read from
 MessageText}");

 //Getting the length of the queue
 queueProperties = queueClient.GetProp
 int? queueLenght = queueProperties.Ap
 Console.WriteLine($"Current lenght of
 }

 //Reading messages removing it from the q
 Console.WriteLine("Reading message from t
 QueueMessage[] messages = queueClient.Rec
 cach
 foreach (QueueMessage message in messages
 {
 Console.WriteLine($"Message read from
 MessageText}");
 //You need to process the message in
 queueClient.DeleteMessage(message.Mes

 //Getting the length of the queue
 queueProperties = queueClient.GetProp
 int? queueLenght = queueProperties.Ap
 Console.WriteLine($"Current lenght of
 }
 }
 }
}

Figure 5-20 Creating a new subscription

Need More Review? Publish-Subscribe Pattern
Although the Azure Queue Storage service doesn’t provide the ability to create
subscriptions to the queues, you can easily implement the publish-subscribe pattern for
communicating applications using Azure Queue Storage. You can learn how to
implement this pattern by reviewing the article at https://docs.microsoft.com/en-
us/learn/modules/communicate-between-apps-with-azure-queue-storage/.

CHAPTER SUMMARY

Azure App Service Logic Apps allows you to interconnect different
services without needing to create specific code for the
interconnection.

Logic App Workflows define the steps needed to exchange
information between applications.

Microsoft provides connectors for getting and sending information
to and from different services.

Triggers are events fired on the source systems.

Actions are each of the steps performed in a workflow.

Azure Logic Apps provides a graphical editor that eases the
process of creating workflows.

You can create your custom connectors for connecting your
application with Azure Logic Apps.

A Custom Connector is a wrapper for a REST or SOAP API.

You can create custom connectors for Azure Logic Apps, Microsoft
Flow, and Microsoft PowerApps.

You cannot reuse custom connectors created for Microsoft Flow or
Microsoft PowerApps with Azure Logic Apps.

You can export your Logic Apps as Azure Resource Manager
templates.

You can edit and modify the Logic Apps templates in Visual
Studio.

The API Management service allows you to publish your back-end
REST or SOAP APIs using a common and secure front end.

You need to create subscriptions in the APIM service for
authenticating the access to the API.

https://docs.microsoft.com/en-us/learn/modules/communicate-between-apps-with-azure-queue-storage/

You need to create a product for publishing a back-end API.

You can publish only some operations of your back-end APIs.

APIM Policies allow you to modify the behavior of the APIM
gateway.

An event is a change in the state of an entity.

In an event-driven architecture, the publisher doesn’t have the
expectation that the event is processed or stored by a subscriber.

Azure Event Grid is a service for implementing event-driven
architectures.

An Event Grid Topic is an endpoint where a publisher service can
send events.

Subscribers are services that read events from an Event Grid
Topic.

You can configure several types of services as event sources or
event subscribers in Azure Event Grid.

You can create custom events for sending them to the Event Grid.

You can subscribe to your custom application with an Event Grid
Topic by using WebHooks.

The Azure Notification Hub is a service that unifies the push
notifications on mobile platforms.

You can connect the push notification services from the different
manufacturers to the Azure Notification Hub.

The Azure Event Hub is the entry point for Big Data event
pipelines.

Azure Event Hub is specialized in ingesting millions of events per
second with low latency.

You can use Azure Event Hub as an event source for the Event
Grid service.

You can use AMQP, Kafka, and HTTPS for connecting to Azure
Event Hub.

In a message-driven architecture, the publisher application has
the expectation that the message is processed or stored by the
subscriber.

The subscriber needs to change the state once the message is
processed.

A message is raw data sent by a publisher that needs to be
processed by a subscriber.

Azure Service Bus and Azure Queue message are message broker
services.

THOUGHT EXPERIMENT

In this thought experiment, demonstrate your skills and
knowledge of the topics covered in this chapter. You can
find answers to this thought experiment in the next
section.

Your organization has several Line-Of-Business (LOB)
applications deployed on Azure and on-premises
environments. The information managed by some of
these LOB applications overlaps between applications.
All your LOB applications allow you to use SOAP or
REST API for connecting to the applications.

Your organization needs to implement some business
processes that require sharing information between the
LOB applications. Answer the following questions about
connecting Azure services and third-party applications:

1. You need to implement a business process that
requires that an application deployed in Azure share
information with an application deployed in your
company’s on-premises datacenter. How can you
implement this business process?

2. Your company needs to share some information
managed by one of the LOB applications with a
partner. The LOB application uses a SOAP API for
accessing the data. You need to ensure that the
partner is authenticated before accessing the
information. Your partner needs to get the
information from your application in JSON format,
so you also need to ensure that the information
provided by your application is published using a
REST API. Which service should you use?

3. One of the LOB applications of your company is
becoming obsolete. Your company decides to
develop a new web application for replacing the
legacy LOB application. You are designing the
architecture for the new web application. You need
to implement a decoupled 311architecture that

needs to process millions of events per second.
Which service should you use?

THOUGHT EXPERIMENT ANSWERS

This section contains the solution to the thought
experiment. Each answer explains why the answer choice
is correct.

1. You should use Azure Logic Apps for implementing
the business process. Azure Logic Apps allows you to
create workflows that can be used to implement
your business process. You can connect Azure Logic
Apps with your on-premises LOB applications by
using the on-premises data gateway. You also need
to create custom connectors for Azure Logic Apps
being able to work with your LOB applications.

2. You should use the API Management service. This
service allows you to share your backed APIs with
partners and external developers securely. Using the
APIM policies, you can also convert the XML
message provided by the SOAP API to JSON
documents needed for REST APIs. You can use
Azure AD, mutual certificate authentication, or API
keys for authenticating access to the API.

3. You should use Azure Event Hub. This service is
specially designed to ingest millions of events per
second. Once the service has ingested the events,
you forward the event to other services like Azure
Storage, Azure Data Lake, or Azure Event Grid. The
critical point here for choosing Azure Event Hub
instead of Event Grid is the number of events that
need to be ingested. Another clue for choosing Event
Hub instead of Azure Queue Storage or Azure
Service Bus is you need to process events instead of
messages. Azure Queue or Azure Service Bus are
services aimed to use in message-driven
architectures.

Index

SYMBOLS
$schema in ARM, 13

A
access control. See authentication; authorization

access keys for storage accounts, 154

access tiers for Blob Storage, 117–118, 120–124

account SAS, 155

token creation, 157–158

URI parameters, 156–157

accounts (Cosmos DB), creating, 77–78

ACI (Azure Container Instance), running container
images, 26–27

ACR (Azure Container Registry), publshing container
images, 24–25

action sets, 118

actions

defined, 242

workflows and, 244

Active Directory. See Azure Active Directory

activity functions, 63–64, 68–69

activity triggers, 64

AllowInsecureHttp, 137

APIM (Azure API Management), 268–278

adding APIs to, 270–272

associating APIs and products, 272–273

authentication for APIs, 273–275

creating instances, 269–273

policies for APIs, 275–278

pricing tiers, 270

APIs. See also APIM (Azure API Management)

creating custom connectors, 249–266

selecting for Cosmos DB, 76–78

App Configuration, 175–183

accessing stores, 178–182

creating stores, 176

key-value pairs, 177

App Service. See Azure App Service

application diagnostics, 32–33

Application Insights, 219–227

accessing, 222–223

adding to apps, 221–222

custom events and metrics, 223–225

sending messages to, 225–226, 227

viewing custom metrics, 226

web tests and alerts, 231–234

apps. See web apps

AppSettings.cs

Listing 2–8, 106

Listing 2–13, 110–111

Listing 2–19, 121

Listing 3–22, 178–179

AppSettings.json configuration file

Listing 2–7, 105

Listing 2–12, 110

Listing 2–18, 121

Listing 5–6, 281

archive storage tier, 117, 120–124

archiving for Blob Storage, 117–120

ARM templates

creating, 12–21

custom for Logic Apps, 266–268

defined, 13

deploying web apps, 35

authentication

for APIs, 273–275

Azure Active Directory, 167–172

defined, 127

for endpoints, 60–61

form-based, 128

Identity Framework, 130

OAuth2, 128–154

authorization servers, creating, 135–146

client applications, creating, 149–152

resource servers, creating, 146–148

authentication, continued

roles in, 133–134

testing, 153

token acquisition steps, 133–135

for web apps, 131–132

running container images, 26–27

shared access signatures, 154–166

accessing storage accounts, 163–166

account SAS token creation, 157–158

account SAS URI parameters, 156–157

service SAS token creation, 159–161

service SAS URI parameters, 158–159

Stored Access Policies and, 161

types of, 155

user delegation SAS token creation, 161–163

token-based, 128–130

authorization

defined, 127

RBAC (role-based access controls), 172–174

authorization servers in OAth2, 133, 135–146

AuthorizationCodeProvider, 138

AuthorizationPermissionMismatch error code, 163

Authorize.cshtml (Listing 3–13), 145

AuthorizeEndpointPath, 137

AuthorizeError.cshtml (Listing 3–14), 146

autoscaling rules for web apps, 41–46

availability

of VMs (virtual machines), 7

of web apps, 231–234

available state (leases), 115

AzCopy, 102

Azure Active Directory, 167–172

authentication, 168–172

registering web apps, 167–168

Azure API Management (APIM), 268–278

adding APIs to, 270–272

associating APIs and products, 272–273

authentication for APIs, 273–275

creating instances, 269–273

policies for APIs, 275–278

pricing tiers, 270

Azure App Configuration, 175–183

accessing stores, 178–182

creating stores, 176

key-value pairs, 177

Azure App Service, 27

autoscaling rules for web apps, 41–46

configuring web app settings, 38–41

connecting to Notification Hub, 288–289

creating web apps, 28–32

deploying code to web apps, 35–38

enabling diagnostics logging, 32–35

Logic Apps, 241–268

creating, 242–249

custom connectors, 249–266

custom templates, 266–268

pricing tiers, 245, 248

settings, 175–176

Azure Blob Storage, 101–124

data archiving and retention, 117–120

.NET Core example, 109–114

hot, cool, archive storage tiers, 120–124

leases, 114–117

moving items between storage accounts/containers,
102–104, 109–114

service SAS URI parameters, 158–159

setting and retrieving properties/metadata, 104–109

Azure Cache for Redis, 212–219

accessing, 214–218

caching rules, 209

creating database, 213–214

implementation patterns, 212–213

pricing tiers, 212

Azure Cloud Services, autoscaling rules, 43

Azure Container Instance (ACI), running container
images, 26–27

Azure Container Registry (ACR), publshing container
images, 24–25

Azure Cosmos DB emulator, 78

Azure Durable Functions, 63–72

Azure Event Grid, 279–287

custom topics, 279–280

processing events, 282–285

publishing events to topics, 280–282

Azure Event Hub, 291–298

Azure Front Door, caching rules, 210–212

Azure Functions, 46

Azure Durable Functions, 63–72

input and output bindings, 46–52

triggers, 52–63

versions of, 55

Azure Instance Metadata Service (IMDS), 192

Azure Key Vault, 176, 183–191

Azure Monitor, 227–231

Azure App Service integration, 34

Log Analytics, 229–231

Metric Analytics, 227–228

Azure Notification Hubs, 287–291

Azure Pipelines, 36

Azure Queue Storage, 305–309

Azure Repos, 36

Azure Resource Manager (ARM) templates

creating, 12–21

defined, 13

deploying web apps, 35

Azure Service Bus, 299–305

Azure Service Fabric, autoscaling rules, 43

Azure Storage Explorer, 102

azureauth.properties (Listing 1–1), 4

Azure.Storage.Blobs SDK, 114

B
BadRequest errors, 99

binding expressions, 50

bindings

in functions, 46–52

triggers versus, 46–47

Blob Storage, 101–124

.NET Core example, 109–114

data archiving and retention, 117–120

hot, cool, archive storage tiers, 120–124

leases, 114–117

moving items between storage accounts/containers,
102–104, 109–114

service SAS URI parameters, 158–159

setting and retrieving properties/metadata, 104–109

Book.cs (Listing 5–1), 251

BooksController.cs (Listing 5–5), 256–259

BooksSingleton.cs (Listing 5–3), 253–254

bounded staleness consistency level (Cosmos DB), 92

breaking state (leases), 115

broken state (leases), 115

built-in connectors, 244

business processes, Logic Apps and, 243

C
Cache-Aside, 213

caching

with Azure Cache for Redis, 212–219

with CDNs (Content Delivery Networks), 202–206

configuring policies for, 207–212

Callback.cs (Listing 5–2), 252

CallbacksSingleton.cs (Listing 5–4), 254–256

Cassandra API, 76–77

consistency levels, 93

CDNs (Content Delivery Networks)

caching rules, 208–210

creating, 202–206

certificate management with KeyVault API, 183–191

change feed notifications in Cosmos DB, 98–101

ChangeFeedPolicy property, 95

child elements, dependencies versus, 21

client functions, 64, 66–67

client IDs, 192

clients in OAth2, 133, 149–152

Clients.cs (Listing 3–10), 141–142

cloud security, 175–196

Azure App Configuration, 175–183

accessing stores, 178–182

creating stores, 176

key-value pairs, 177

KeyVault API, 183–191

managed identities, 191–196

cloud synchronization, deploying web apps, 35

Common.cs

Listing 2–9, 106–107

Listing 2–14, 111

Listing 2–20, 122

Listing 3–23, 179–180

configuring

API authentication, 273–275

bindings in functions, 46–52

caching policies, 207–212

profiles (Azure CDN), 202–205

triggers in functions, 52–63

VMs (virtual machines) for remote access, 7–12

web app settings, 38–41

connection strings for web apps, 38, 40

connections between services. See information exchange

connectors

creating custom, 249–266

defined, 242

types of, 244–245

consistency levels in Cosmos DB, 91–94

consistent prefix consistency level (Cosmos DB), 92

consumer groups, 292

container images

creating with Docker, 21–24

publishing to Azure Container Registry, 24–25

running with Azure Container Instance, 26–27

containers (Cosmos DB), creating, 94–97

content, types of, 201

content caching, 213

Content Delivery Networks (CDNs)

caching rules, 208–210

creating, 202–206

contentVersion in ARM, 13

continuous deployment of web apps, 35

contributors (RBAC), 173

cool storage tier, 117, 120–124

Cosmos DB, 75–101

consistency levels, 91–94

creating account, 77–78

creating containers, 94–97

data operation trigger (Listing 1–10), 53

emulator for, 78

MongoDB API example, 90–91

partitioning schemes, 79–81

selecting APIs, 76–78

server-side programming, 98–101

SQL API example, 81–90

custom connectors, creating, 249–266

custom roles (RBAC), 174

custom templates, creating, 266–268

custom topics, creating, 279–280

custom Track Availability tests, 231

D
data access in Cosmos DB

MongoDB API example, 90–91

SQL API example, 81–90

data archiving for Blob Storage, 117–120

data exchange. See information exchange

data operations, as trigger type, 53–54

data retention for Blob Storage, 117–120

data security. See security

databases

in Azure Cache for Redis

accessing, 214–218

creating, 213–214

in Cosmos DB, 94–95

dedicated throughput, 95

dependencies in ARM, 20–21

deploying

code to web apps, 35–38

VMs (virtual machines), 2–7

deployment diagnostics, 33

deployment slots, 37

detailed error logging, 32

diagnostics logging, enabling, 32–35

distributed transactions, 213

Docker, creating container images, 21–24

Docker Compose, 23–24

Dockerfile (Listing 1–5), 23

.NET Core

Blob Storage example, 109–114

console applications, creating VMs (virtual machines),
4

SDK versions, 114

downloading log files, 34

DSA (Dynamic Site Acceleration), 206

durable functions. See Azure Durable Functions

dynamic content, 201

E
edges in Gremlin API, 77

emulators, Cosmos DB, 78

enabling diagnostics logging, 32–35

Enterprise Integration Pack, 242

error levels for log files, 33

Event Grid, 279–287

custom topics, 279–280

processing events, 282–285

publishing events to topics, 280–282

event handlers, 279

Event Hub, 291–298

event sources, 279

event subscriptions, 279

event-based solutions for information exchange, 278–
298

Azure Event Grid, 279–287

custom topics, 279–280

processing events, 282–285

publishing events to topics, 280–282

Azure Event Hub, 291–298

Azure Notification Hubs, 287–291

events

defined, 279

in partitions, 292

processing, 282–285

publishing

to Event Hub, 291–292

to topics (in Event Grid), 280–282

eventual consistency level (Cosmos DB), 92

expired state (leases), 115

extensions for VMs (virtual machines), 3

F
failed request tracing, 32

filter sets, 118

Forbidden Access Errors, 188

form-based authentication, 128

Front Door, caching rules, 210–212

FTP, deploying web apps, 35

function keys, 61

Function1.cs

Listing 5–10, 283–284

Listing 5–11, 293–294

function.json

bindings (Listing 1–8), 51

timer triggers (Listing 1–11), 56

functions

in ARM, 14, 19

Azure Functions, 46

Azure Durable Functions, 63–72

input and output bindings, 46–52

triggers, 52–63

versions of, 55

G
geographical regions for VMs (virtual machines), 3

Git repository, deploying web apps, 35

Gremlin API, 77

groups (RBAC), 172

H
handler validation, 286

HomeController class (Listing 4–3), 223–225

HomeController RedisCache method (Listing 4–1), 216–
217

horizontal scaling, 42

host keys, 61

host properties, 62

“hot” partitions, 80

hot storage tier, 117, 120–124

HTTP triggers, 53, 58–62

hybrid connections for web apps, 29

I
IaaS (Infrastructure as a Service), 1

VMs (virtual machines), 2

configuring for remote access, 7–12

creating ARM templates, 12–21

creating container images with Docker, 21–24

provisioning, 2–7

publishing container images to Azure Container
Registry, 24–25

running container images with Azure Container
Instance, 26–27

Identity Framework, 130

IfNotExists methods in Azure Cosmos DB SDK, 86–87

images. See container images

IMDS (Azure Instance Metadata Service), 192

implementation patterns for Azure Cache for Redis, 212–
213

IndexingPolicy property, 95

information exchange

APIM (Azure API Management), 268–278

adding APIs to, 270–272

associating APIs and products, 272–273

authentication for APIs, 273–275

creating instances, 269–273

policies for APIs, 275–278

pricing tiers, 270

event-based solutions, 278–298

Azure Event Grid, 279–287

Azure Event Hub, 291–298

Azure Notification Hubs, 287–291

Logic Apps, 241–268

creating, 242–249

custom connectors, 249–266

custom templates, 266–268

pricing tiers, 245, 248

message-based solutions, 298–309

Azure Queue Storage, 305–309

Azure Service Bus, 299–305

information security. See security

Infrastructure as a Service (IaaS), 1

VMs (virtual machines), 2

configuring for remote access, 7–12

creating ARM templates, 12–21

creating container images with Docker, 21–24

provisioning, 2–7

publishing container images to Azure Container
Registry, 24–25

running container images with Azure Container
Instance, 26–27

input bindings in functions, 46–52

instances (APIM), creating, 269–273

instrumentation with Application Insights, 219–227

accessing, 222–223

adding to apps, 221–222

custom events and metrics, 223–225

sending messages to, 225–226, 227

viewing custom metrics, 226

Integration Account connectors, 244

interconnected services. See information exchange

ISE (Integration Service Environment) connectors,
245, 249

J
job and message queuing, 213

JSON Web Token (JWT), 129–130

K
key management with KeyVault API, 183–191

key-value pairs, creating, 177

KeyVault API, 183–191

Kudu, 36

L
leased state (leases), 115

leases collection, 54

leases for Blob Storage, 114–117

lifecycle management policies for Blob Storage, 118–120

Linux App Services, 32

listings

adding OAuth authorization server, 136–137

adding secret information to home page, 195

AppSettings.cs, 178–179

AppSettings.cs C# class, 106, 110–111, 121

AppSettings.json configuration file, 105, 110, 121

AppSettings.json file, 281

ARM template for deploying VM, 14–18

authorization code for OnCreate delegate, 140

authorization code for OnReceive delegate, 140

authorization code grant section, 152

Authorize.cshtml, 145

AuthorizeError.cshtml, 146

Azure Durable Functions activity function code, 68–
69

Azure Durable Functions activity function JSON
configuration file, 68, 69

Azure Durable Functions client function code, 66

Azure Durable Functions orchestrator function
code, 67

azureauth.properties, 4

Book.cs, 251

BooksController.cs, 256–259

BooksSingleton.cs, 253–254

Callback.cs, 252

CallbacksSingleton.cs, 254–256

Clients.cs, 141–142

Common.cs, 179–180

Common.cs C# class, 106–107, 111, 122

configuring a timer trigger in function.json, 56

configuring CosmosDB trigger, 53

configuring HTTP trigger, 58–59

configuring input and output bindings, 48–49

configuring input and output bindings in
function.json, 51

Cosmos DB SQL API example, 81–86

Cosmos DB SQL API example: Address.cs, 89

Cosmos DB SQL API example: Device.cs, 89

Cosmos DB SQL API example: Person.cs, 88–89

Cosmos DB SQL API stored procedure, 98–99

creating, deleting, updating, and reading Key Vault
items, 185–188

creating service principal password, 26–27

Dockerfile example, 23

durable functions-client function JSON configuration
file, 66–67

durable functions-orchestrator function JSON
configuration file, 67

example JSON document, 79

Function1.cs, 283–284, 293–294

getting secret from key vault, 194–195

HomeController class, 223–225

HomeController RedisCache method, 216–217

index method in ManageController.cs, 150–151

lifecycle management policy definition, 119

MeController.cs, 147

NewItemCreatedEvent.cs, 281, 283

OAuthController.cs, 143–144

OnGrantClientCredientials delegate, 139–140

OnGrantResourceOwnerCredentials delegate, 139

OnValidateClientAuthentication delegate, 138–139

OnValidateClientRedirectUri delegate, 138

Paths.cs, 142–143

Program.cs, 4–6, 162–163, 180–181, 297, 302–305,
307–308

Program.cs C# class, 107–108, 112–113, 122–124

Program.cs extension, 164–166, 171

Program.cs Main method, 282

Program.cs modifications, 8–11, 115–116

RedisCache view, 217–218

refresh token for OnCreate delegate, 140

refresh token for OnReceive delegate, 140

setting user-defined metadata, 108–109

SimpleEventProcessor.cs, 295–296

Startup.WebApi.cs, 148

using bindings in JavaScript, 52

using timer trigger with JavaScript, 56–57

local environment functions, troubleshooting, 57

Log Analytics, 229–231

log streams, 34

logging

diagnostics logging, enabling, 32–35

transient faults, 237

Logic Apps, 241–268

creating, 242–249

custom connectors, 249–266

custom templates, 266–268

pricing tiers, 245, 248

logical partitions

defined, 79

partition keys, 79–81

size limitations, 79

M
ManageController.cs index method (Listing 3–17), 150–

151

managed connectors, 242, 244

managed identities, 191–196

in RBAC, 172

types of, 192

Managed Service Identity. See managed identities

MeController.cs (Listing 3–15), 147

message-based solutions for information exchange, 298–
309

Azure Queue Storage, 305–309

Azure Service Bus, 299–305

metadata in Blob Storage, 104–109

Metric Analytics, 227–228

Microsoft.Azure.Storage.Blob SDK, 114

mobile apps, push notifications, 287–291

MongoDB API, 77

consistency levels, 94

example usage, 90–91

monitoring

with Application Insights, 219–227

accessing, 222–223

adding to apps, 221–222

custom events and metrics, 223–225

sending messages to, 225–226, 227

viewing custom metrics, 226

web tests and alerts, 231–234

with Azure Monitor, 227–231

Log Analytics, 229–231

Metric Analytics, 227–228

moving Blob Storage items, 102–104, 109–114

multifactor authentication, 127

multi-step web tests, 231

N
namespaces (in Azure Service Bus)

creating, 299–300

defined, 299

naming VMs (virtual machines), 3

network interfaces for VMs (virtual machines), 3

network security groups

managing, 12

for VMs (virtual machines), 8

NewItemCreatedEvent.cs

Listing 5–7, 281

Listing 5–9, 283

Notification Hubs, 287–291

O
OAuth2 authentication, 128–154

authorization servers, creating, 135–146

client applications, creating, 149–152

resource servers, creating, 146–148

roles in, 133–134

testing, 153

token acquisition steps, 133–135

for web apps, 131–132

OAuthController.cs (Listing 3–12), 143–144

OnCreate delegate authorization code (Listing 3–6), 140

OnCreate delegate refresh token (Listing 3–8), 140

OnGrantClientCredientials delegate (Listing 3–5), 139–
140

OnGrantResourceOwnerCredentials delegate (Listing 3–
4), 139

on-premises connectors, 244

OnReceive delegate authorization code (Listing 3–7), 140

OnReceive delegate refresh token (Listing 3–9), 140

OnValidateClientAuthentication delegate (Listing 3–3),
138–139

OnValidateClientRedirectUri delegate (Listing 3–2), 138

operating systems

for VMs (virtual machines), 2

for web apps, 28

optimizing performance. See performance optimization

orchestration triggers, 64

orchestrator functions, 64, 67

output bindings in functions, 46–52

outputs in ARM, 14

owners (RBAC), 173

P
PaaS (Platform as a Service), 1

Azure Functions, 46

Azure Durable Functions, 63–72

input and output bindings, 46–52

triggers, 52–63

web apps, 27

autoscaling rules, 41–46

configuring settings, 38–41

creating, 28–32

deploying code to, 35–38

enabling diagnostics logging, 32–35

parameters in ARM, 13, 18–19

partition keys, 79–81

partitioning schemes for Cosmos DB, 79–81

partitions, events in, 292

Paths.cs (Listing 3–11), 142–143

performance optimization, 201–219

caching

with Azure Cache for Redis, 212–219

configuring policies for, 207–212

CDNs (Content Delivery Networks)

caching rules, 208–210

creating, 202–206

transient faults, 234–238

permissions (RBAC), 172

physical partitions, 79

Platform as a Service (PaaS), 1

Azure Functions, 46

Azure Durable Functions, 63–72

input and output bindings, 46–52

triggers, 52–63

web apps, 27

autoscaling rules, 41–46

configuring settings, 38–41

creating, 28–32

deploying code to, 35–38

enabling diagnostics logging, 32–35

PNS (Platform Notification System), 287

policies for APIs, 275–278

Polling triggers, 244

post-triggers, 100

pre-triggers, 100

pricing tiers

for Azure API Management, 270

for Azure Cache for Redis, 212

for Logic Apps, 245, 248

for web apps, 29, 31–32

principal IDs, 192

processing events, 282–285

profile conditions in autoscaling, 43–44

profiles (Azure CDN), configuring, 202–205

Program.cs

extension

Listing 3–20, 164–166

Listing 3–21, 171

Listing 1–2, 4–6

Listing 1–3, 8–11

Listing 2–10, 107–108

Listing 2–15, 112–113

Listing 2–16, 115–116

Listing 2–21, 122–124

Listing 3–19, 162–163

Listing 3–24, 180–181

Listing 5–13, 297

Listing 5–14, 302–303

Listing 5–15, 303–305

Listing 5–16, 307–308

Main method (Listing 5–8), 282

properties

in Blob Storage, 104–109

for Cosmos DB containers, 95–96

in Gremlin API, 77

providers, 137–138

provisioning VMs (virtual machines), 2–7

public IPs for VMs (virtual machines), 8

publishing

container images to Azure Container Registry, 24–25

events

to Event Hub, 291–292

to topics (in Event Grid), 280–282

push notifications, 287–291

Push triggers, 244

Python, 102

Q

queues

Azure Queue Storage, 305–309

Azure Service Bus, 299

quota limits for VMs (virtual machines), 3

R
RBAC (role-based access controls), 172–174

readers (RBAC), 173

Recurrence triggers, 243

Redis, 212–219

accessing, 214–218

caching rules, 209

creating database, 213–214

implementation patterns, 212–213

pricing tiers, 212

RedisCache view (Listing 4–2), 217–218

RefreshTokenProvider, 138

registering web apps in Azure Active Directory, 167–168

remote access, configuring VMs (virtual machines) for,
7–12

resource groups

in ARM, 12, 13

for VMs (virtual machines), 3

resource owners in OAth2, 133

resource providers in ARM, 12–13

resource servers in OAth2, 133, 146–148

resources

in ARM, 12, 14

number of, 3

related, 3

retention for Blob Storage, 117–120

retrying operations, 234–238

role assignment (RBAC), 173

role definitions (RBAC), 173

role-based access controls (RBAC), 172–174

routing rules, caching in, 210–211

running container images with Azure Container
Instance, 26–27

S
SAS (shared access signatures), 154–166

accessing storage accounts, 163–166

account SAS token creation, 157–158

account SAS URI parameters, 156–157

service SAS token creation, 159–161

service SAS URI parameters, 158–159

Stored Access Policies and, 161

types of, 155

user delegation SAS token creation, 161–163

Scale-In rules, 45

Scale-Out rules, 45

scaling rules for web apps, 41–46

$schema in ARM, 13

scope (RBAC), 173

secret management with KeyVault API, 183–191

security

authentication

authorization servers, creating, 135–146

Azure Active Directory, 167–172

client applications, creating, 149–152

defined, 127

form-based, 128

Identity Framework, 130

OAuth2, 128–154

resource servers, creating, 146–148

shared access signatures, 154–166

testing, 153

token-based, 128–130

authorization

defined, 127

RBAC (role-based access controls), 172–174

best practices, storing connection strings, 216

cloud solutions, 175–196

Azure App Configuration, 175–183

KeyVault API, 183–191

managed identities, 191–196

dimensions of, 127

security principals (RBAC), 172

security rules for VMs (virtual machines), 8

selecting

APIs for Cosmos DB, 76–78

consistency levels for Cosmos DB, 91–94

server-side programming in Cosmos DB, 98–101

service principal passwords, creating, 26–27

service principals (RBAC), 172

service SAS, 155

token creation, 159–161

URI parameters, 158–159

services in Docker, 24

session consistency level (Cosmos DB), 92

shared access signatures (SAS), 154–166

accessing storage accounts, 163–166

account SAS token creation, 157–158

account SAS URI parameters, 156–157

service SAS token creation, 159–161

service SAS URI parameters, 158–159

Stored Access Policies and, 161

types of, 155

user delegation SAS token creation, 161–163

shared key authorization, 154

shared throughput, 95

SimpleEventProcessor.cs (Listing 5–12), 295–296

Sliding WIndow triggers, 243

social media authentication for web apps, 130

SQL API, 76

consistency levels, 93

example usage, 81–90

SQL queries, 88

SSIS (SQL Server Integration Service), 102

SSL settings for web apps, 40–41

Startup.WebApi.cs (Listing 3–16), 148

stateful functions. See Azure Durable Functions

static content, 201

storage accounts

shared access signatures, 154–166

for VMs (virtual machines), 3

storage solutions

Blob Storage, 101–124

data archiving and retention, 117–120

.NET Core example, 109–114

hot, cool, archive storage tiers, 120–124

leases, 114–117

moving items between storage
accounts/containers, 102–104, 109–114

service SAS URI parameters, 158–159

setting and retrieving properties/metadata, 104–
109

Cosmos DB, 75–101

consistency levels, 91–94

creating account, 77–78

creating containers, 94–97

emulator for, 78

MongoDB API example, 90–91

partitioning schemes, 79–81

selecting APIs, 76–78

server-side programming, 98–101

SQL API example, 81–90

Stored Access Policies, 161

stored procedures in Cosmos DB, 98–101

stores (Azure App Configuration)

accessing, 178–182

creating, 176

storing log files, 33–34, 35

strong consistency level (Cosmos DB), 92

subscription deployments in ARM, 13

subscriptions

for API authentication, 273–275

event subscriptions, 279

synthetic partition keys, 80–81

system-assigned managed identities, 192

T
Table API, 76

consistency levels, 93

tagging container images, 24

telemetry with Application Insights, 219–227

accessing, 222–223

adding to apps, 221–222

custom events and metrics, 223–225

sending messages to, 225–226, 227

viewing custom metrics, 226

template reference in ARM, 19

templates (ARM)

creating, 12–21

custom for Logic Apps, 266–268

defined, 13

deploying web apps, 35

testing OAuth2 authentication, 153

throughput for Cosmos DB containers, 95

timers as trigger type, 53, 55–57

TimeToLive (TTL) property, 95, 207–208, 209

token-based authentication, 128–130

account SAS token creation, 157–158

service SAS token creation, 159–161

token acquisition steps, 133–135

user delegation SAS token creation, 161–163

TokenEndpointPath, 137

topics

Azure Service Bus

creating, 299–300

defined, 299

Event Grid

creating custom, 279–280

defined, 279

publishing events to, 280–282

transient faults, 234–238

triggers

bindings versus, 46–47

in Cosmos DB, 98–101

defined, 242

for durable functions, 64

in functions, 52–63

workflows and, 243–244

troubleshooting local environment functions, 57

TTL (TimeToLive) property, 95, 207–208, 209

U
UniqueKeyPolicy property, 95–96

URL ping tests, 231–234

user access administrators (RBAC), 173

user delegation SAS, 155

token creation, 161–163

user session caching, 213

user-assigned managed identities, 192

user-defined functions in Cosmos DB, 98–101

users (RBAC), 172

V
variables

in ARM, 14

in workflows, 266

versions of Azure Functions, 55

vertical scaling, 42

vertices in Gremlin API, 77

virtual networks for VMs (virtual machines), 3

VMs (virtual machines), 2

autoscaling rules, 43

configuring for remote access, 7–12

creating ARM templates, 12–21

creating container images with Docker, 21–24

provisioning, 2–7

publishing container images to Azure Container
Registry, 24–25

running container images with Azure Container
Instance, 26–27

VNet integration for web apps, 29

W
WAR files, deploying web apps, 35

web apps, 27

autoscaling rules, 41–46

checking availability, 231–234

configuration data security, 175–183

accessing stores, 178–182

creating stores, 176

key-value pairs, 177

configuring settings, 38–41

creating, 28–32

deploying code to, 35–38

enabling diagnostics logging, 32–35

OAuth2 authentication for, 131–132

registering in Azure Active Directory, 167–168

social media authentication for, 130

web server diagnostics, 32

web server logging, 32

webhooks as trigger type, 53, 58–62

workflows

actions and, 244

creating, 245–248

defined, 242

triggers and, 243–244

variables in, 266

Z
ZIP files, deploying web apps, 35

Exam Ref AZ-204 Developing
Solutions for Microso� Azure

LIST OF URLS

Chapter 1: Develop Azure Infrastructure as a
service compute solution

https://management.core.windows.net/

https://management.azure.com/

https://login.windows.net/

https://graph.windows.net/

https://portal.azure.com

https://schema.management.azure.com/schemas/20
15-01-01/deploymentTemplate.json#

https://schema.management.azure.com/schemas/20
15-01-01/deploymentTemplate.json#

https://schema.management.azure.com/schemas/20
18-05-01/subscriptionDeploymentTemplate.json#

https://schema.management.azure.com/schemas/20
15-01-01/deploymentTemplate.json#

https://schema.management.azure.com/schemas/20
15-01-01/deploymentParameters.json#

https://shell.azure.com

http://$SP_NAME

http://$SP_NAME

https://<your_app_service_name>.azurewebsites.ne
t

https://docs.microsoft.com/en-us/azure/app-
service/containers/app-service-linux-intro

https://management.core.windows.net/
https://management.azure.com/
https://login.windows.net/
https://graph.windows.net/
https://portal.azure.com/
https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json
https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json
https://schema.management.azure.com/schemas/2018-05-01/subscriptionDeploymentTemplate.json
https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json
https://schema.management.azure.com/schemas/2015-01-01/deploymentParameters.json
https://shell.azure.com/
https://docs.microsoft.com/en-us/azure/app-service/containers/app-service-linux-intro

https://docs.microsoft.com/en-
us/azure/devops/repos/git/creatingrepo

https://portal.azure.com

https://portal.azure.com

https://portal.azure.com

http://<your_function_app>.azurewebsites.net/api/
<your_function_name>

https://<your_function_app>.azurewebsites.net/api
/<your_function_name>

https://<your_function_app_name>.azurewebsites.
net/admin/host/status

https://<your_function_app_name>.azurewebsites.
net/api/<your_function_name>

https://<your_function_app_name>.azurewebsites.
net/api/devices/{id:int?}

https://www.asp.net/web-api/overview/web-api-
routing-and-actions/attribute-routing-in-web-api-
2#constraints

https://docs.microsoft.com/en-us/azure/app-
service/app-service-authentication-how-to#access-
user-claims

http://localhost:7071/api/orchestrators/Orchestrator
Function

https://support.microsoft.com/en-
us/help/2721672/microsoft-server-software-
support-for-microsoft-azure-virtual-machines

https://docs.microsoft.com/en-us/azure/virtual-
machines/linux/endorsed-distros

https://docs.microsoft.com/en-us/azure/virtual-
machines/windows/manage-availability

https://docs.microsoft.com/en-us/azure/virtual-
network/security-overview

https://docs.microsoft.com/en-us/azure/devops/repos/git/creatingrepo
https://portal.azure.com/
https://portal.azure.com/
https://portal.azure.com/
https://www.asp.net/web-api/overview/web-api-routing-and-actions/attribute-routing-in-web-api-2#constraints
https://docs.microsoft.com/en-us/azure/app-service/app-service-authentication-how-to#access-user-claims
http://localhost:7071/api/orchestrators/OrchestratorFunction
https://support.microsoft.com/en-us/help/2721672/microsoft-server-software-support-for-microsoft-azure-virtual-machines
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/endorsed-distros
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/manage-availability
https://docs.microsoft.com/en-us/azure/virtual-network/security-overview

https://docs.microsoft.com/en-us/azure/virtual-
network/tutorial-restrict-network-access-to-
resources

https://docs.microsoft.com/en-us/azure/templates/

https://docs.microsoft.com/en-us/azure/azure-
resource-manager/resource-group-template-
functions

https://docs.docker.com/develop/develop-
images/dockerfile_best-practices/

https://docs.microsoft.com/en-
us/azure/aks/tutorial-kubernetes-prepare-app

https://azure.github.io/AppService/2019/11/01/App
-Service-Integration-with-Azure-Monitor.html

https://github.com/projectkudu/kudu/wiki

https://docs.microsoft.com/en-us/azure/app-
service/deploy-zip

https://docs.microsoft.com/en-us/azure/app-
service/deploy-content-sync

https://docs.microsoft.com/en-us/azure/app-
service/deploy-local-git

https://docs.microsoft.com/en-us/azure/app-
service/deploy-staging-slots

https://docs.microsoft.com/en-us/azure/app-
service/configure-common

https://docs.microsoft.com/en-us/azure/azure-
monitor/platform/autoscale-best-practices

https://docs.microsoft.com/en-
us/azure/architecture/best-practices/auto-
scaling#related-patterns-and-guidance

https://docs.microsoft.com/en-us/azure/azure-
functions/functions-triggers-bindings#supported-
bindings

https://docs.microsoft.com/en-us/azure/azure-
functions/install-update-binding-extensions-

https://docs.microsoft.com/en-us/azure/virtual-network/tutorial-restrict-network-access-to-resources
https://docs.microsoft.com/en-us/azure/templates/
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-template-functions
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.microsoft.com/en-us/azure/aks/tutorial-kubernetes-prepare-app
https://azure.github.io/AppService/2019/11/01/App-Service-Integration-with-Azure-Monitor.html
https://github.com/projectkudu/kudu/wiki
https://docs.microsoft.com/en-us/azure/app-service/deploy-zip
https://docs.microsoft.com/en-us/azure/app-service/deploy-content-sync
https://docs.microsoft.com/en-us/azure/app-service/deploy-local-git
https://docs.microsoft.com/en-us/azure/app-service/deploy-staging-slots
https://docs.microsoft.com/en-us/azure/app-service/configure-common
https://docs.microsoft.com/en-us/azure/azure-monitor/platform/autoscale-best-practices
https://docs.microsoft.com/en-us/azure/architecture/best-practices/auto-scaling#related-patterns-and-guidance
https://docs.microsoft.com/en-us/azure/azure-functions/functions-triggers-bindings#supported-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/install-update-binding-extensions-manual

manual

https://docs.microsoft.com/en-us/azure/azure-
functions/functions-bindings-expressions-patterns

https://docs.microsoft.com/en-us/azure/azure-
functions/functions-versions

https://docs.microsoft.com/en-us/azure/azure-
functions/functions-bindings-http-
webhook#trigger---hostjson-properties

https://docs.microsoft.com/en-us/azure/azure-
functions/functions-scale

http://localhost:7071/runtime/webhooks/durabletas
k/instances

http://localhost:7071/runtime/webhooks/durabletas
k/instances

http://localhost:7071/runtime/webhooks/durabletas
k/instances

http://localhost:7071/runtime/webhooks/durabletas
k/instances

http://localhost:7071/runtime/webhooks/durabletas
k/instances

https://docs.microsoft.com/en-us/azure/azure-
functions/durable/durable-functions-concepts

https://docs.microsoft.com/en-us/azure/active-
directory/develop/howto-create-service-principal-
portal

Chapter 2: Develop for Azure storage

http://portal.azure.com

http://portal.azure.com

http://portal.azure.com

https://github.com/Hashnode/mern-starter.git

http://localhost:8000

http://portal.azure.com

https://docs.microsoft.com/en-us/azure/azure-functions/install-update-binding-extensions-manual
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-expressions-patterns
https://docs.microsoft.com/en-us/azure/azure-functions/functions-versions
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-http-webhook#trigger---hostjson-properties
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale
http://localhost:7071/runtime/webhooks/durabletask/instances
http://localhost:7071/runtime/webhooks/durabletask/instances
http://localhost:7071/runtime/webhooks/durabletask/instances
http://localhost:7071/runtime/webhooks/durabletask/instances
http://localhost:7071/runtime/webhooks/durabletask/instances
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-concepts
https://docs.microsoft.com/en-us/azure/active-directory/develop/howto-create-service-principal-portal
http://portal.azure.com/
http://portal.azure.com/
http://portal.azure.com/
https://github.com/Hashnode/mern-starter.git
http://localhost:8000/
http://portal.azure.com/

http://portal.azure.com

https://portal.azure.com

https://azure.microsoft.com/en-us/features/storage-
explorer/

https://docs.microsoft.com/en-
us/dotnet/api/microsoft.azure.storage.blob.blobcon
tainerproperties

http://portal.azure.com

https://docs.microsoft.com/en-us/azure/cosmos-
db/local-emulator

https://docs.microsoft.com/en-us/azure/cosmos-
db/partition-data#physical-partitions

https://docs.microsoft.com/en-us/azure/cosmos-
db/partitioning-overview

https://docs.microsoft.com/en-us/azure/cosmos-
db/sql-api-query-reference

https://docs.microsoft.com/en-us/azure/cosmos-
db/create-graph-dotnet

https://docs.microsoft.com/en-us/azure/cosmos-
db/create-cassandra-dotnet

https://docs.microsoft.com/en-us/azure/cosmos-
db/consistency-levels-tradeoffs

https://docs.microsoft.com/en-us/azure/cosmos-
db/consistency-levels-tradeoffs

https://docs.microsoft.com/en-us/azure/cosmos-
db/consistency-levels-across-apis

https://docs.microsoft.com/en-us/azure/cosmos-
db/databases-containers-items#azure-cosmos-
containers

https://docs.microsoft.com/en-us/azure/cosmos-
db/how-to-time-to-live

https://docs.microsoft.com/en-us/azure/cosmos-
db/unique-keys

http://portal.azure.com/
https://portal.azure.com/
https://azure.microsoft.com/en-us/features/storage-explorer/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.azure.storage.blob.blobcontainerproperties
http://portal.azure.com/
https://docs.microsoft.com/en-us/azure/cosmos-db/local-emulator
https://docs.microsoft.com/en-us/azure/cosmos-db/partition-data#physical-partitions
https://docs.microsoft.com/en-us/azure/cosmos-db/partitioning-overview
https://docs.microsoft.com/en-us/azure/cosmos-db/sql-api-query-reference
https://docs.microsoft.com/en-us/azure/cosmos-db/create-graph-dotnet
https://docs.microsoft.com/en-us/azure/cosmos-db/create-cassandra-dotnet
https://docs.microsoft.com/en-us/azure/cosmos-db/consistency-levels-tradeoffs
https://docs.microsoft.com/en-us/azure/cosmos-db/consistency-levels-tradeoffs
https://docs.microsoft.com/en-us/azure/cosmos-db/consistency-levels-across-apis
https://docs.microsoft.com/en-us/azure/cosmos-db/databases-containers-items#azure-cosmos-containers
https://docs.microsoft.com/en-us/azure/cosmos-db/how-to-time-to-live
https://docs.microsoft.com/en-us/azure/cosmos-db/unique-keys

https://docs.microsoft.com/en-us/azure/cosmos-
db/change-feed-design-patterns

https://docs.microsoft.com/en-us/azure/cosmos-
db/how-to-write-stored-procedures-triggers-udfs

https://docs.microsoft.com/en-us/azure/cosmos-
db/how-to-write-javascript-query-api

https://docs.microsoft.com/en-us/azure/cosmos-
db/how-to-use-stored-procedures-triggers-udfs

https://docs.microsoft.com/en-us/azure/cosmos-
db/how-to-configure-cosmos-db-trigger-
connection-policy

https://docs.microsoft.com/en-us/azure/cosmos-
db/change-feed

https://docs.microsoft.com/en-
us/azure/storage/blobs/storage-quickstart-blobs-
python

https://docs.microsoft.com/en-us/azure/machine-
learning/team-data-science-process/move-data-to-
azure-blob-using-ssis

https://blogs.msdn.microsoft.com/windowsazurestor
age/2012/06/12/introducing-asynchronous-cross-
account-copy-blob/

https://docs.microsoft.com/en-
us/rest/api/storageservices/lease-blob

https://docs.microsoft.com/en-
us/rest/api/storageservices/lease-container

https://docs.microsoft.com/en-
us/azure/storage/blobs/storage-blob-storage-tiers

https://docs.microsoft.com/en-
us/azure/storage/blobs/storage-lifecycle-
management-concepts

Chapter 3: Implement Azure security
https://developers.google.com/identity/sign-

in/web/devconsole-project

https://docs.microsoft.com/en-us/azure/cosmos-db/change-feed-design-patterns
https://docs.microsoft.com/en-us/azure/cosmos-db/how-to-write-stored-procedures-triggers-udfs
https://docs.microsoft.com/en-us/azure/cosmos-db/how-to-write-javascript-query-api
https://docs.microsoft.com/en-us/azure/cosmos-db/how-to-use-stored-procedures-triggers-udfs
https://docs.microsoft.com/en-us/azure/cosmos-db/how-to-configure-cosmos-db-trigger-connection-policy
https://docs.microsoft.com/en-us/azure/cosmos-db/change-feed
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-quickstart-blobs-python
https://docs.microsoft.com/en-us/azure/machine-learning/team-data-science-process/move-data-to-azure-blob-using-ssis
https://blogs.msdn.microsoft.com/windowsazurestorage/2012/06/12/introducing-asynchronous-cross-account-copy-blob/
https://docs.microsoft.com/en-us/rest/api/storageservices/lease-blob
https://docs.microsoft.com/en-us/rest/api/storageservices/lease-container
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blob-storage-tiers
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-lifecycle-management-concepts
https://developers.google.com/identity/sign-in/web/devconsole-project

https://localhost:44395/signin-google

https://localhost:44317

https://localhost:44317

https://localhost:44317/Home/SignIn

https://localhost:44317/Manage

http://www.w3.org/1999/xhtml

http://www.w3.org/1999/xhtml

http://portal.azure.com

https://azure.microsoft.com/en-us/features/storage-
explorer/

https://portal.azure.com

https://{storageAccount}.blob.core.windows.net

https://{storageAccount}.blob.core.windows.net

https://portal.azure.com

https://portal.azure.com

https://portal.azure.com

https://portal.azure.com

https://portal.azure.com

https://docs.microsoft.com/en-us/azure/azure-app-
configuration/use-key-vault-references-dotnet-core

https://portal.azure.com

https://{keyVaultName}.vault.azure.net

https://{keyVaultName}.vault.azure.net

https://{keyvault-name}.vault.azure.net/{object-
type}/{object-name}/{object-version}

https://portal.azure.com

https://docs.microsoft.com/en-in/azure/app-
service/app-service-web-get-started-dotnet

https://{keyVaultName}.vault.azure.net/secrets/{sec
retName}

https://localhost:44395/signin-google
https://localhost:44317/
https://localhost:44317/
https://localhost:44317/Home/SignIn
https://localhost:44317/Manage
http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml
http://portal.azure.com/
https://azure.microsoft.com/en-us/features/storage-explorer/
https://portal.azure.com/
https://portal.azure.com/
https://portal.azure.com/
https://portal.azure.com/
https://portal.azure.com/
https://portal.azure.com/
https://docs.microsoft.com/en-us/azure/azure-app-configuration/use-key-vault-references-dotnet-core
https://portal.azure.com/
https://portal.azure.com/
https://docs.microsoft.com/en-in/azure/app-service/app-service-web-get-started-dotnet

https://portal.azure.com

https://docs.microsoft.com/en-us/azure/key-
vault/quick-create-portal

https://tools.ietf.org/html/rfc6749

https://docs.microsoft.com/en-
us/aspnet/aspnet/overview/owin-and-katana/owin-
oauth-20-authorization-server

https://docs.microsoft.com/en-
us/rest/api/storageservices/define-stored-access-
policy

https://docs.microsoft.com/en-
us/azure/storage/common/storage-stored-access-
policy-define-dotnet

https://docs.microsoft.com/en-
us/rest/api/storageservices/delegate-access-with-
shared-access-signature

https://docs.microsoft.com/en-us/azure/active-
directory/develop/vs-active-directory-dotnet-what-
happened

https://docs.microsoft.com/en-us/azure/role-based-
access-control/custom-roles

https://docs.microsoft.com/en-us/azure/azure-app-
configuration/quickstart-feature-flag-aspnet-core

https://docs.microsoft.com/en-us/azure/azure-app-
configuration/enable-dynamic-configuration-
aspnet-core

https://docs.microsoft.com/en-us/azure/azure-app-
configuration/howto-best-practices

https://docs.microsoft.com/en-us/azure/key-
vault/about-keys-secrets-and-certificates

Chapter 4: Monitor, troubleshoot, and optimize
Azure solutions

https://<your_app_service_name>.azurewebsites.ne
t

https://portal.azure.com/
https://docs.microsoft.com/en-us/azure/key-vault/quick-create-portal
https://tools.ietf.org/html/rfc6749
https://docs.microsoft.com/en-us/aspnet/aspnet/overview/owin-and-katana/owin-oauth-20-authorization-server
https://docs.microsoft.com/en-us/rest/api/storageservices/define-stored-access-policy
https://docs.microsoft.com/en-us/azure/storage/common/storage-stored-access-policy-define-dotnet
https://docs.microsoft.com/en-us/rest/api/storageservices/delegate-access-with-shared-access-signature
https://docs.microsoft.com/en-us/azure/active-directory/develop/vs-active-directory-dotnet-what-happened
https://docs.microsoft.com/en-us/azure/role-based-access-control/custom-roles
https://docs.microsoft.com/en-us/azure/azure-app-configuration/quickstart-feature-flag-aspnet-core
https://docs.microsoft.com/en-us/azure/azure-app-configuration/enable-dynamic-configuration-aspnet-core
https://docs.microsoft.com/en-us/azure/azure-app-configuration/howto-best-practices
https://docs.microsoft.com/en-us/azure/key-vault/about-keys-secrets-and-certificates

https://portal.azure.com

https://<your_endpoint’s_name>.azureedge.net

https://<your_endpoint’s_name>.azureedge.net

https://app.contoso.com

https://portal.azure.com

https://portal.azure.com

https://docs.microsoft.com/en-
us/azure/frontdoor/quickstart-create-front-door

https://portal.azure.com

https://portal.azure.com

https://portal.azure.com

https://portal.azure.com

https://visualstudio.microsoft.com/free-developer-
offers/

https://portal.azure.com

https://portal.azure.com

https://portal.azure.com

https://docs.microsoft.com/en-us/azure/cdn/cdn-
how-caching-works

https://docs.microsoft.com/en-
us/azure/frontdoor/front-door-caching

https://stackexchange.github.io/StackExchange.Redi
s/Basics

https://stackexchange.github.io/StackExchange.Redi
s/Transactions

https://stackexchange.github.io/StackExchange.Redi
s/KeysValues

https://docs.microsoft.com/en-us/azure/azure-
monitor/app/api-custom-events-metrics

https://docs.microsoft.com/en-
us/azure/kusto/query/

https://portal.azure.com/
https://app.contoso.com/
https://portal.azure.com/
https://portal.azure.com/
https://docs.microsoft.com/en-us/azure/frontdoor/quickstart-create-front-door
https://portal.azure.com/
https://portal.azure.com/
https://portal.azure.com/
https://portal.azure.com/
https://visualstudio.microsoft.com/free-developer-offers/
https://portal.azure.com/
https://portal.azure.com/
https://portal.azure.com/
https://docs.microsoft.com/en-us/azure/cdn/cdn-how-caching-works
https://docs.microsoft.com/en-us/azure/frontdoor/front-door-caching
https://stackexchange.github.io/StackExchange.Redis/Basics
https://stackexchange.github.io/StackExchange.Redis/Transactions
https://stackexchange.github.io/StackExchange.Redis/KeysValues
https://docs.microsoft.com/en-us/azure/azure-monitor/app/api-custom-events-metrics
https://docs.microsoft.com/en-us/azure/kusto/query/

https://docs.microsoft.com/en-us/azure/azure-
monitor/log-query/query-language

https://docs.microsoft.com/en-us/azure/azure-
monitor/platform/alerts-log

https://docs.microsoft.com/en-
us/azure/architecture/best-practices/transient-
faults

https://docs.microsoft.com/en-
us/aspnet/aspnet/overview/developing-apps-with-
windows-azure/building-real-world-cloud-apps-
with-windows-azure/transient-fault-handling

https://docs.microsoft.com/en-
us/azure/architecture/patterns/retry

https://docs.microsoft.com/en-
us/azure/architecture/patterns/circuit-breaker

Chapter 5: Connect to and consume Azure services
and third-party services

https://docs.microsoft.com/en-
us/connectors/connector-reference/

https://docs.microsoft.com/en-
us/azure/devops/user-guide/sign-up-invite-
teammates?view=azure-devops

https://portal.azure.com

https://github.com/MicrosoftDocs/pipelines-dotnet-
core

https://github.com/join

https://dev.azure.com

https://localhost:44398/swagger

https://<your_app_service_name>.azurewebsites.ne
t

https://<your_app_service_name>.azurewebsites.ne
t/swagger

https://github.com/domaindrivendev/Swashbuckle

https://docs.microsoft.com/en-us/azure/azure-monitor/log-query/query-language
https://docs.microsoft.com/en-us/azure/azure-monitor/platform/alerts-log
https://docs.microsoft.com/en-us/azure/architecture/best-practices/transient-faults
https://docs.microsoft.com/en-us/aspnet/aspnet/overview/developing-apps-with-windows-azure/building-real-world-cloud-apps-with-windows-azure/transient-fault-handling
https://docs.microsoft.com/en-us/azure/architecture/patterns/retry
https://docs.microsoft.com/en-us/azure/architecture/patterns/circuit-breaker
https://docs.microsoft.com/en-us/connectors/connector-reference/
https://docs.microsoft.com/en-us/azure/devops/user-guide/sign-up-invite-teammates?view=azure-devops
https://portal.azure.com/
https://github.com/MicrosoftDocs/pipelines-dotnet-core
https://github.com/join
https://dev.azure.com/
https://localhost:44398/swagger
https://github.com/domaindrivendev/Swashbuckle

https://github.com/nihaue/TRex

https://<your_app_service_name>.azurewebsites.ne
t/swagger/docs/v1

https://portal.azure.com

https://portal.azure.com

https://aka.ms/download-azure-logic-apps-tools-
visual-studio-2019

https://portal.azure.com

https://portal.azure.com

https://<your_app_service_name>.azurewebsites.ne
t/swagger/docs/v1

https://fakerestapi.azurewebsites.net

https://<your_APIM_name>.developer.azure-
api.net/

https://portal.azure.com

https://portal.azure.com

https://portal.azure.com

https://az204books.azure-api.net/library/books/

https://portal.azure.com

https://<Your_EventGrid_Topic>.
<region_name>-1.eventgrid.azure.net/api/events

https://docs.microsoft.com/en-us/azure/azure-
functions/functions-develop-vs#publish-to-azure

https://github.com/Azure-Samples/azure-event-
grid-viewer

http://portal.azure.com

https://console.firebase.google.com

https://portal.azure.com

https://docs.microsoft.com/en-
us/azure/notification-hubs/ios-sdk-204

https://github.com/nihaue/TRex
https://portal.azure.com/
https://portal.azure.com/
https://aka.ms/download-azure-logic-apps-tools-visual-studio-2019
https://portal.azure.com/
https://portal.azure.com/
https://fakerestapi.azurewebsites.net/
https://portal.azure.com/
https://portal.azure.com/
https://portal.azure.com/
https://az204books.azure-api.net/library/books/
https://portal.azure.com/
https://docs.microsoft.com/en-us/azure/azure-functions/functions-develop-vs#publish-to-azure
https://github.com/Azure-Samples/azure-event-grid-viewer
http://portal.azure.com/
https://console.firebase.google.com/
https://portal.azure.com/
https://docs.microsoft.com/en-us/azure/notification-hubs/ios-sdk-204

https://docs.microsoft.com/en-
us/azure/notification-hubs/notification-hubs-
android-push-notification-google-fcm-get-started

https://docs.microsoft.com/en-
us/azure/notification-hubs/notification-hubs-
windows-store-dotnet-get-started-wns-push-
notification

https://portal.azure.com

https://portal.azure.com

https://portal.azure.com

https://docs.microsoft.com/en-us/azure/azure-
functions/functions-compare-logic-apps-ms-flow-
webjobs

https://docs.microsoft.com/en-us/azure/logic-
apps/logic-apps-pricing

https://docs.microsoft.com/en-us/azure/logic-
apps/logic-apps-create-variables-store-values

https://docs.microsoft.com/en-
us/connectors/custom-connectors/

https://docs.microsoft.com/en-us/azure/logic-
apps/logic-apps-create-azure-resource-manager-
templates

https://docs.microsoft.com/en-us/azure/logic-
apps/logic-apps-deploy-azure-resource-manager-
templates

https://azure.microsoft.com/en-
us/pricing/details/api-management/

https://docs.microsoft.com/en-us/azure/api-
management/api-management-howto-developer-
portal

https://azure.microsoft.com/es-es/blog/versions-
revisions/

https://docs.microsoft.com/en-us/azure/api-
management/api-management-access-restriction-

https://docs.microsoft.com/en-us/azure/notification-hubs/notification-hubs-android-push-notification-google-fcm-get-started
https://docs.microsoft.com/en-us/azure/notification-hubs/notification-hubs-windows-store-dotnet-get-started-wns-push-notification
https://portal.azure.com/
https://portal.azure.com/
https://portal.azure.com/
https://docs.microsoft.com/en-us/azure/azure-functions/functions-compare-logic-apps-ms-flow-webjobs
https://docs.microsoft.com/en-us/azure/logic-apps/logic-apps-pricing
https://docs.microsoft.com/en-us/azure/logic-apps/logic-apps-create-variables-store-values
https://docs.microsoft.com/en-us/connectors/custom-connectors/
https://docs.microsoft.com/en-us/azure/logic-apps/logic-apps-create-azure-resource-manager-templates
https://docs.microsoft.com/en-us/azure/logic-apps/logic-apps-deploy-azure-resource-manager-templates
https://azure.microsoft.com/en-us/pricing/details/api-management/
https://docs.microsoft.com/en-us/azure/api-management/api-management-howto-developer-portal
https://azure.microsoft.com/es-es/blog/versions-revisions/
https://docs.microsoft.com/en-us/azure/api-management/api-management-access-restriction-policies#RestrictCallerIPs

policies#RestrictCallerIPs

https://docs.microsoft.com/en-us/azure/api-
management/api-management-howto-protect-
backend-with-aad

https://docs.microsoft.com/en-us/azure/api-
management/api-management-howto-mutual-
certificates

https://docs.microsoft.com/en-us/azure/api-
management/api-management-error-handling-
policies

https://docs.microsoft.com/en-us/azure/api-
management/set-edit-policies

https://docs.microsoft.com/es-es/azure/api-
management/api-management-howto-api-inspector

https://docs.microsoft.com/en-us/azure/azure-
functions/functions-monitoring

https://docs.microsoft.com/en-us/azure/event-
grid/manage-event-delivery

https://docs.microsoft.com/en-
us/azure/notification-hubs/notification-hubs-
enterprise-push-notification-architecture

https://docs.microsoft.com/en-
us/azure/storage/blobs/storage-quickstart-blobs-
portal#create-a-container

https://docs.microsoft.com/en-
us/azure/storage/common/storage-account-
manage#access-keys

https://docs.microsoft.com/en-in/azure/event-
hubs/event-hubs-features

https://docs.microsoft.com/en-us/azure/service-
bus-messaging/service-bus-queues-topics-
subscriptions

https://docs.microsoft.com/en-us/azure/service-
bus-messaging/service-bus-performance-

https://docs.microsoft.com/en-us/azure/api-management/api-management-access-restriction-policies#RestrictCallerIPs
https://docs.microsoft.com/en-us/azure/api-management/api-management-howto-protect-backend-with-aad
https://docs.microsoft.com/en-us/azure/api-management/api-management-howto-mutual-certificates
https://docs.microsoft.com/en-us/azure/api-management/api-management-error-handling-policies
https://docs.microsoft.com/en-us/azure/api-management/set-edit-policies
https://docs.microsoft.com/es-es/azure/api-management/api-management-howto-api-inspector
https://docs.microsoft.com/en-us/azure/azure-functions/functions-monitoring
https://docs.microsoft.com/en-us/azure/event-grid/manage-event-delivery
https://docs.microsoft.com/en-us/azure/notification-hubs/notification-hubs-enterprise-push-notification-architecture
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-quickstart-blobs-portal#create-a-container
https://docs.microsoft.com/en-us/azure/storage/common/storage-account-manage#access-keys
https://docs.microsoft.com/en-in/azure/event-hubs/event-hubs-features
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-queues-topics-subscriptions
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-performance-improvements

improvements

https://docs.microsoft.com/en-us/azure/service-
bus-messaging/topic-filters

https://docs.microsoft.com/en-us/azure/service-
bus-messaging/service-bus-azure-and-service-bus-
queues-compared-contrasted

https://docs.microsoft.com/en-
us/learn/modules/communicate-between-apps-
with-azure-queue-storage/

https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-performance-improvements
https://docs.microsoft.com/en-us/azure/service-bus-messaging/topic-filters
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-azure-and-service-bus-queues-compared-contrasted
https://docs.microsoft.com/en-us/learn/modules/communicate-between-apps-with-azure-queue-storage/

Code Snippets
Many titles include programming code or configuration
examples. To optimize the presentation of these
elements, view the eBook in single-column, landscape
mode and adjust the font size to the smallest setting. In
addition to presenting code and configurations in the
reflowable text format, we have included images of the
code that mimic the presentation found in the print
book; therefore, where the reflowable format may
compromise the presentation of the code listing, you will
see a “Click here to view code image” link. Click the link
to view the print-fidelity code image. To return to the
previous page viewed, click the Back button on your
device or app.

	Title Page
	Copyright Page
	Dedication Page
	Contents at a glance
	Contents
	Acknowledgments
	About the author
	Introduction
	Organization of this book
	Microsoft certifications
	Errata, updates, and book support
	Stay in touch

	Important: How to use this book to study for the exam
	Chapter 1. Develop Azure Infrastructure as a service compute solution
	Skill 1.1: Implement solutions that use virtual machines (VM)
	Skill 1.2: Create Azure App Service web apps
	Skill 1.3: Implement Azure Functions
	Chapter summary
	Thought experiment
	Thought experiment answers

	Chapter 2. Develop for Azure storage
	Skill 2.1: Develop solutions that use Cosmos DB storage
	Skill 2.2: Develop solutions that use Blob Storage
	Chapter summary
	Thought experiment
	Thought experiment answers

	Chapter 3. Implement Azure security
	Skill 3.1: Implement user authentication and authorization
	Skill 3.2: Implement secure cloud solutions
	Chapter summary
	Thought experiment
	Thought experiment answers

	Chapter 4. Monitor, troubleshoot, and optimize Azure solutions
	Skill 4.1: Integrate caching and content delivery within solutions
	Skill 4.2: Instrument solutions to support monitoring and logging
	Chapter summary
	Thought experiment
	Thought experiment answers

	Chapter 5. Connect to and consume Azure services and third-party services
	Skill 5.1: Develop an App Service Logic App
	Skill 5.2: Implement API Management
	Skill 5.3: Develop event-based solutions
	Skill 5.4: Develop message-based solutions
	Chapter summary
	Thought experiment
	Thought experiment answers

	Index
	Exam Ref AZ-204 Developing Solutions for Microsoft Azure
	Code Snippets

